如图所示的滑轮,它可以绕垂直于纸面的光滑固定水平轴O转动,轮上绕有轻质柔软细线,线的一端系一质量为3m的重物,另一端系一质量为m,电阻为r的金属杆.在竖直平面内有间距为L的足够长的平行金属导轨PQ、EF,在QF之间连接有阻值为R的电阻,其余电阻不计,磁感应强度为Bo的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF处,将重物由静止释放,当重物下降h时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好,忽略所有摩擦,求:
(1)重物匀速下降的速度v;
(2)重物从释放到下降h对的过程中,电阻R中产生的焦耳热QR;
(3)若将重物下降h时的时刻记作t=0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰 好不产生感应电流,则磁感应强度B怎样随时间t变化(写出B与t的关系式).
水平面上两根足够长的不光滑金属导轨固定放置,间距为L,一端通过导线与阻值为R的电阻连接,导轨上放一质量为m的金属杆,金属杆与导轨的电阻不计,磁感应强度方B的匀强磁场方向竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动,当改变恒定拉力F大小时,相对应的匀速运动速度υ大小也会变化,F与υ的关系如图所示.F0、υ0为已知量.求:
金属杆与导轨间的滑动摩擦力f==?
当恒定外力为2F0时,杆最终做匀速运动的速度大小?
如图所示,匀强磁场磁感应强度 B=0.2T,磁场宽度 L=0.3m, 一正方形金属框边长 ab=0.1m, 每边电阻R=0.2W,金属框在拉力F作用下以v=10m/s的速度匀速穿过磁场区,其平面始终保持与磁感线方向垂直.求:
画出金属框穿过磁场区的过程中,金属框内感应电流i和a、b两端电压Uab随时间t的变化图线(规定以adcba为正方向);
金属框穿过磁场区域的过程中,拉力F做的功;
金属框穿过磁场区域的过程中,导线ab上所产生的热量.
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
为使ab杆保持静止,求通过ab的电流的大小和方向;
当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
两根足够长的光滑平行直导轨MN、PQ与水平面成θ角放置,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于导轨平面向上,导轨和金属杆接触良好,它们的电阻不计。现让ab杆由静止开始沿导轨下滑。
求ab杆下滑的最大速度vm;
ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q,求该过程中ab杆下滑的距离x及通过电阻R的电量q。
如图所示,螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。螺线管与足够长的平行金属导轨MN、PQ相连并固定在同一平面内,与水平面的夹角为q,两导轨间距为L。导轨电阻忽略不计。导轨处于垂直斜面向上、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。已知金属杆ab的质量为m,电阻为R2,重力加速度为g。忽略螺线管磁场对金属杆ab的影响、忽略空气阻力。
为使ab杆保持静止,求通过ab的电流的大小和方向;
当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
若螺线管内方向向左的磁场的磁感应强度的变化率DB/Dt=k(k>0)。将金属杆ab由静止释放,杆将沿斜面向下运动。求当杆的速度为v时,杆的加速度大小。
如图,虚线下方有足够大的场强大小E=5.0×103 V/m和上方场强为8mg/3q的匀强电场,方向均水平向右。质量均为m=1.5×10-2kg的A、B小球,其中B球为绝缘小球且不带电,被长为R的绝缘丝线悬挂在O点刚好静止在虚线上, A球带电荷量为qA=+6.0×10-6C,在竖直平面内的以某一初速度v竖直进入电场,运动到B点速度刚好水平,同时与B球发生正碰并立即粘在一起围绕O点做半径为R=0.7m完整的圆周运动,假设甲、乙两球可视为质点,g取10 m/s2。(sin53°=0.8,c0s53°=0.6)
(1)假设初速度v="20m/s" ,试求小球A与B球碰撞前能运动的水平位移的大小和整个过程中电场力对小球做功的最大值。
(2)如果小球刚好能做完整的圆周运动,试求碰撞前A球的最小速度和绳子所受的最大拉力分别多大。
如图20所示,一质量为m=0.016kg、长L=0.5m、宽d=0.1m、电阻R=0.1Ω的矩形线圈,从h1=5m的高处由静止开始下落,然后进入匀强磁场,当下边进入磁场时,由于磁场力的作用,线圈正好作匀速运动。(g=10m/s2)
求匀强磁场的磁感应强度B。
如果线圈的下边通过磁场所经历的时间t="0." 15s,求磁场区域的高度h2.
从线圈的下边进入磁场开始到线圈下边离开磁场的时间内,在线圈中产生的焦耳热是多少?
一个半径r=0.10m的闭合导体圆环,圆环单位长度的电阻R0=1.0×10-2W×m-1。如图甲所示,圆环所在区域存在着匀强磁场,磁场方向垂直圆环所在平面向外,磁感应强度大小随时间变化情况如图乙所示。
分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电动势的大小;
分别求在0~0.3 s和0.3 s~0.5s 时间内圆环中感应电流的大小,并在图19丙中画出圆环中感应电流随时间变化的i-t图象(以线圈中逆时针电流为正,至少画出两个周期);
求在0~10s内圆环中产生的焦耳热。
质量为m、总电阻为R的导线做成边长为l的正方形线框MNPQ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是光滑的,在导轨的下端有一宽度为l(即ab=l)、磁感应强度为B的有界匀强磁场,磁场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从静止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:
线框通过磁场时的运动速度;
开始释放时,MN与bb′之间的距离;
线框在通过磁场的过程中所生的热。
如图所示,BC是半径为R的1/4圆弧形光滑绝缘轨道,轨道位于竖直平面内,其下端与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度为E。现有一质量为m的带电小滑块(体积很小可视为质点),在BC轨道的D点释放后可以静止不动。已知OD与竖直方向的夹角为α =37°,随后把它从C点由静止释放,滑到水平轨道上的A点时速度减为零。若已知滑块与水平轨道间的动摩擦因数为=0.25,且sin370 ="0.6 " cos370 ="0.8 " tan37°=0.75。取重力加速度为g求:
滑块的带电量q1和带电种类;
水平轨道上A、B两点之间的距离L;
滑块从C点下滑过程中对轨道的最大压力;
试题篮
()