如图所示,两根等长的绝缘细线悬挂一水平金属细杆MN,处在与其垂直的水平匀强磁场中。金属细杆的长度为1 m,质量为8.9×10-3 kg。当金属细杆中通以0.89 A的电流时,两绝缘细线上的拉力均恰好为零。忽略与金属细杆连接细导线的影响,g=10m/s2。求:
(1)金属细杆所受安培力的方向;
(2)金属细杆中电流的方向;
(3)匀强磁场的磁感应强度大小。
如图所示,位于竖直平面内的光滑轨道,由一段水平的直轨道和与之相切的圆弧轨道ABC连接而成,OC连线与竖直方向夹角为θ=30o。空间中存在一与与水平面成θ=30︒且斜向下的电场,电场强度为E,圆形轨道的半径为R=m.一质量为m=1kg的小物块带正电,所带电荷量q,且满足Eq=mg。物块在A点获得一初速度,可使得物块恰能在ABC段不离开圆轨道。求:
(1)物块在C点的速度;
(2)物块在A点对轨道的压力;
(3)滑块从C点飞出后到达水平轨道所经历的时间t。
如图所示,一倾角为θ=37o的绝缘斜面高度为h=3.6m,底端有一固定挡板,整个斜面置于匀强电场中,场强大小为E=1×106N/C,方向水平向右。现有一质量为m=1.1kg,电荷量为q=-1×10-6C的小物体,沿斜面顶端从静止开始下滑,小物体与斜面间的动摩擦因数为µ=0.5,且小物体与挡板碰撞时不损失机械能(g=10m/s2,sin37o=0.6,cos37o=0.8)求:
(1)小物体第一次与挡板碰撞前瞬间速度v的大小;
(2)小物体从静止开始下滑到最后停止运动通过的总路程s.
如图所示,MN表示真空室中垂直于纸面放置的感光板,它的一侧有方向垂直于纸面向里匀强磁场. 一个质量为m,电荷量为q的带电粒子从感光板上的狭缝O处以垂直于感光板的初速度v射入磁场区域,最后到达感光板上的P点. 经测量P、O间的距离为L,不计带电粒子受到的重力. 求:
(1)该粒子带正电还是负电?
(2)带电粒子由O运动到P所用的时间t;
(3)匀强磁场的磁感应强度B.
如图所示,一倾角为θ=37o的绝缘斜面高度为h=3.6m,底端有一固定挡板,整个斜面置于匀强电场中,场强大小为E=1×106N/C,方向水平向右。现有一质量为m=1.1kg,电荷量为q=-1×10-6C的小物体,沿斜面顶端从静止开始下滑,小物体与斜面间的动摩擦因数为µ=0.5,且小物体与挡板碰撞时不损失机械能(g=10m/s2,sin37o=0.6,cos37o=0.8)求:
(1)小物体第一次与挡板碰撞前瞬间速度v的大小;
(2)小物体从静止开始下滑到最后停止运动通过的总路程s.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度.现有一电荷量,质量的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取.
试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能。
如图所示,在一光滑水平的桌面上,放置一质量为M.宽为L的足够长“U”形框架,其ab部分电阻为R,框架其他部分的电阻不计.垂直框架两边放一质量为m.电阻为R的金属棒cd,它们之间的动摩擦因数为μ,棒通过细线跨过一定滑轮与劲度系数为k.另一端固定的轻弹簧相连.开始弹簧处于自然状态,框架和棒均静止.现在让框架在大小为2 μmg的水平拉力作用下,向右做加速运动,引起棒的运动可看成是缓慢的.水平桌面位于竖直向上的匀强磁场中,磁感应强度为B.问:
(1)框架和棒刚开始运动的瞬间,框架的加速度为多大?
(2)框架最后做匀速运动(棒处于静止状态)时的速度多大?
(3)若框架通过位移s后开始匀速运动,已知弹簧弹性势能的表达式为(x为弹簧的形变量),则在框架通过位移s的过程中,回路中产生的电热为多少?
如图所示,一带电小球质量m=1kg,用长度L=1m绝缘细线悬挂在水平向右的匀强电场中,静止时悬线与竖直方向成θ= 53°,已知sin53°=0.8,cos53°=0.6,取重力加速度g=10m/s2。
(1)求小球所受的电场力的大小F;
(2)若仅将电场强度大小突然减小为原来的,求小球摆到最低点时的速度大小υ和细线对小球的拉力大小T。
在足够大的绝缘光滑水平面上有一质量m=1.0×10-3kg、带电量q=1.0×10-10C的带正电的小球,静止在O点.以O点为原点,在该水平面内建立直角坐标系xOy.在t0=0时突然加一沿x轴正方向、大小E1=2.0×106V/m的匀强电场,使小球开始运动.在t1=1.0s时,所加的电场突然变为沿y轴正方向、大小E2=2.0×106V/m的匀强电场.在t2=2.0s时所加电场又突然变为另一个匀强电场E3,使小球在此电场作用下在t3=4.0s时速度变为零.求:
(1)在t1=1.0s时小球的速度v1的大小;
(2)在t2=2.0s时小球的位置坐标x2、y2;
(3)匀强电场E3的大小;
如图所示,两根足够长的平行光滑金属导轨MN、PQ与水平面的夹角为a=30°,导轨电阻不计,导轨处在垂直导轨平面斜向上的有界匀强磁场中. 两根电阻都为R=2W、质量都为m=0.2kg的完全相同的细金属棒ab和cd垂直导轨并排靠紧的放置在导轨上,与磁场上边界距离为x=1.6m,有界匀强磁场宽度为3x=4.8m.先将金属棒ab由静止释放,金属棒ab刚进入磁场就恰好做匀速运动,此时立即由静止释放金属棒cd,金属棒cd在出磁场前已做匀速运动.两金属棒在下滑过程中与导轨接触始终良好(取重力加速度g=10m/s2).求:
(1)金属棒ab刚进入磁场时棒中电流I;
(2)金属棒cd在磁场中运动的过程中通过回路某一截面的电量q;
(3)两根金属棒全部通过磁场的过程中回路产生的焦耳热Q.
如图所示,在竖直平面内一个带正电的小球质量为m,所带的电荷量为q,用一根长为L不可伸长的绝缘细线系在一匀强电场中的O点.匀强电场方向水平向右,分布的区域足够大.现将带正电小球从O点右方由水平位置A点无初速度释放,小球到达最低点B时速度恰好为零.
(1)求匀强电场的电场强度E的大小;
(2)若小球从O点的左方由水平位置C点无初速度释放,则小球到达最低点B所用的时间t是多少?
如图所示,在倾角为θ的绝缘斜面上,有相距为L的A、B两点,分别固定着两个带电量均为的正点电荷。O为AB连线的中点,a、b是AB连线上两点,其中Aa=Bb=。一质量为m、电荷量为+q的小滑块(可视为质点)以初动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为,第一次到达b点时的动能恰好为零,已知静电力常量为。求:
(1)两个带电量均为的正点电荷在a点处的合场强大小和方向;
(2)小滑块由a点向b点运动的过程中受到的滑动摩擦力大小;
(3)aO两点间的电势差。
如图所示,ABCD为竖直放在场强为E=104 V/m的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R的半圆形轨道,轨道的水平部分与其半圆相切,A为水平轨道上的一点,而且AB=R=0.2m,把一质量m=0.1kg、带电荷量q=+1×10-4 C的小球放在水平轨道的A点由静止开始释放,小球在轨道的内侧运动.(g取10 m/s2)求:
(1)小球到达C点时的速度是多大?
(2)小球到达C点时对轨道压力是多大?
(3)若让小球安全通过D点,开始释放点离B点至少多远?
如图所示,匀强电场方向水平向右,匀强磁场方向垂直于纸面向里。一质量为m、带电量为q的微粒以速度υ与磁场垂直、与电场成θ角射入复合场中,恰能做匀速直线运动。求电场强度E和磁感应强度B的大小。
试题篮
()