如图甲所示,一个n=10匝,面积为S=0.3m2的圆形金属线圈,其总电阻为R1="2Ω," 与R2=4Ω的电阻连接成闭合电路。线圈内存在方向垂直于纸面向里,磁感应强度按B1="2t" + 3 (T)规律变化的磁场。电阻R2两端通过金属导线分别与电容器C的两极相连.电容器C紧靠着带小孔a(只能容一个粒子通过)的固定绝缘弹性圆筒。圆筒内壁光滑,筒内有垂直水平面竖直向下的匀强磁场B2,O是圆筒的圆心,圆筒的内半径为r=0.4m.
(1)金属线圈的感应电动势E和电容器C两板间的电压U;
(2)在电容器C内紧靠极板且正对a孔的D处有一个带正电的粒子从静止开始经电容器C加速后从a孔垂直磁场B2并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞四次后恰好又从小孔a射出圆筒.已知粒子的比荷q/m=5×107(C/kg),该带电粒子每次与筒壁发生碰撞时电量和能量都不损失,不计粒子重力和空气阻力,则磁感应强度B2多大(结果允许含有三角函数式)。
如图所示,在xoy平面的第四象限内存在沿y轴正方向的匀强磁场,场强大小为E,第一象限存在一有界匀强磁场,方向垂直于xoy平面向里,磁感应强度为B,磁场上边界与x轴正向夹角θ=30°,直线MN与y轴平行,N点坐标为(L,0),现从MN上的P点无初速度释放质量为m,电荷量为q的带正电粒子,不计粒子的重力,求:
(1)若粒子进入磁场后将垂直于上边界射出磁场,求PN之间的距离;
(2)若粒子进入磁场后能再次回到电场中,则PN之间的距离应满足什么条件?
两根平行金属导轨固定倾斜放置,与水平面夹角为37°,相距d="0.5" m,a、b间接一个电阻R,R="1.5" Ω.在导轨上c、d两点处放一根质量m=0.05 kg的金属棒,bc长L="1" m,金属棒与导轨间的动摩擦因数μ=0.5.金属棒在导轨间的电阻r="0.5" Ω,金属棒被两个垂直于导轨的木桩顶住而不会下滑,如图所示.在金属导轨区域加一个垂直导轨斜向下的匀强磁场,磁场随时间的变化关系如图所示,重力加速度g=" 10" m/s2.可认为最大静摩擦力与滑动摩擦力相等,(sin37°=0.6,cos 37° =0.8).求:
(1)0~1.0 s内回路中产生的感应电动势大小;
(2)t=0时刻,金属棒所受的安培力大小;
(3)在磁场变化的全过程中,若金属棒始终没有离开木桩而上滑,则图4中t0的最大值;
(4)通过计算在图6中画出0~t0max内金属棒受到的静摩擦力随时间的变化图象.
如图所示,两足够长的平行光滑的金属导轨MN、PQ相距为L=1m,导轨平面与水平面夹角α=30°,导轨电阻不计。磁感应强度为B1=2T的匀强磁场垂直导轨平面向上,长为L=1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m1=2kg、电阻为R1=1Ω。两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为d=0.5m,定值电阻为R2=3Ω,现闭合开关S并将金属棒由静止释放,取g=10m/s2,求:
(1)金属棒下滑的最大速度为多大?
(2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率P为多少?
(3)当金属棒稳定匀速下滑时,在水平放置的平行金属间加一垂直于纸面向里的匀强磁场B2=3T,在下板的右端且非常靠近下板的位置处有一质量为m2=3×10-4kg、所带电荷量为q=-1×10-4C的液滴以初速度v水平向左射入两板间,该液滴可视为质点。要使带电粒子能从金属板间射出,初速度v应满足什么条件?
宽度为L,足够长的光滑倾斜导轨与水平面间夹角为θ,匀强磁场磁 感应强度为B,方向垂直于导轨向上,范围足够大,导轨的上端连着一个阻值为R的电阻,下端连着一个阻值为2R的电阻,导轨电阻不计。金属棒ab长为L,质量为m,电阻也为R,垂直地放在导轨上。在某一平行于导轨向上的恒力(图中未画出)的作用下,ab棒从静止开始沿导轨向上运动,最后达到稳定的运动状态。整个过程中,通过斜面底端电阻2R的最大电流为I,求:
(1)通过ab棒的最大电流;(2)ab棒的最大加速度;(3)ab棒的最大速度。
如图所示,带电平行金属板相距为2R,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域,与两板及左侧边缘线相切。一个带正电的粒子(不计重力)沿两板间中心线O1O2从左侧边缘O1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t0。若撤去磁场,粒子仍从O1点以相同速度射入,则经时间打到极板上。
(1)求两极板间电压u;
(2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O1 O2从O1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件。
如图所示,两根等高光滑的圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好,求:
(1)棒到达最低点时的速度大小和通过电阻R的电流.
(2)棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.
(3)若棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?
如图所示,在坐标系xOy中,y轴右侧有一匀强电场;在第二、三象限内有一有界匀强磁场,其上、下边界无限远,右边界为y轴、左边界为平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。一带正电,电量为q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=45°,大小为v.粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求:
(1)粒子经过A点时速度的方向和A点到x轴的距离;
(2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次到达磁场所用的时间。
如图甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=300。一质量m="0.20" kg,阻值r="0.50" Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M="0.60" kg的重物相连。细线与金属导轨平行。金属棒沿导轨向上滑行的速度v与时间t之间的关系如图乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g="10" m/s2,求:
(1)0~0.3 s内棒通过的位移;
(2)金属棒在0~0.6 s内产生的热量。
如图甲所示,空间存在一宽度为2L有界匀强磁场,磁场方向垂直纸面向里。在光滑绝缘水平面内有一边长为L的正方形金属线框,其质量m=1kg、电阻R=4Ω,在水平向左的外力F作用下,以初速度v0=4m/s匀减速进入磁场,线框平面与磁场垂直,外力F大小随时间t变化的图线如图乙所示。以线框右边刚进入磁场时开始计时,求:
(1)匀强磁场的磁感应强度B;
(2)线框进入磁场的过程中,通过线框的电荷量q;
(3)判断线框能否从右侧离开磁场?说明理由。
如图所示,质量为m,阻值为R的导体棒ab垂直放在光滑足够长的U形导轨的底端,U形导轨的顶端连接一个阻值为R的电阻,导轨平面与水平面成角,整个装置处在与导轨平面垂直的匀强磁场中.现给导体棒沿导轨向上的初速度,在导体棒上升到最高点的过程中电阻上产生了的热量,返回过程中,导体棒在到达底端前已经做匀速运动,速度大小为.导轨电阻不计,重力加速度为g.求:
(1)导体棒从开始运动到返回底端的过程中,回路中产生的电热;
(2)导体棒上升的最大高度.
(3)导体棒在底端开始运动时的加速度大小;
如图所示,水平面上有两根相距0.5m的足够长的光滑平行金属导轨MN 和PQ,它们的电阻可忽略不计,在M 和P 之间接有阻值为R=3.0Ω 的定值电阻,导体棒ab 长l=0.5m,质量m=1kg,其电阻为r=1.0Ω,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4T.现使ab 以v0=10m/s 的速度向右做匀速运动.
(1)使ab棒向右匀速的拉力F 为多少?
(2)若撤掉拉力F,当导体棒速度v=5m/s 时,试求导体棒的加速度大小为多少?
(3)试求从撤掉拉力F 后,直至导体棒ab 停止的过程中,在电阻R 上消耗的焦耳热。
如图甲所示,空间存在B=0.5T、方向竖直向下的匀强磁场,MN、PQ是相互平行的粗糙的长直导轨,处于同一水平面内,其间距L=0.2m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1kg的导体棒,从零时刻开始,通过一小型电动机对ab棒施加一个牵引力F,方向水平向左,使其从静止开始沿导轨做加速运动,此过程中棒始终保持与导轨垂直且接触良好,图乙是棒的速度—时间图像,其中OA段是直线,AC是曲线,DE是曲线图像的渐近线,小型电动机功率在12s末达到额定功率Pm=4.5W,此后功率保持不变,除R以外,其余部分的电阻均不计,取g=10m/s2。求:
(1)导体棒在0~12s内的加速度大小;
(2)导体棒与导轨间的动摩擦因数和电阻R的阻值;
(3)若已知0~12s内R上产生的热量为12.5J,则此过程中牵引力F做的功。
如图所示,在水平直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场。一粒子源固定在x轴上的A点,A点坐标为. 粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L),电子经过磁场偏转后方向恰好垂直ON,ON是与x轴正方向成角的射线.(电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.)求:
(1)第二象限内电场强度E的大小.
(2)电子离开电场时的速度方向与y轴正方向的夹角
(3)圆形磁场的最小半径Rmin.
如图甲所示足够长的平行光滑金属导轨ab、cd倾斜放置,两导轨之间的距离为L=0.5m,导轨平面与水平面间的夹角为θ=30°,导轨上端a、c之间连接有一阻值为R1=4Ω的电阻,下端b、d之间接有一阻值为R2=4Ω的小灯泡。有理想边界的匀强磁场垂直于导轨平面向上,虚线ef为磁场的上边界,ij为磁场的下边界,此区域内的感应强度B,随时间t变化的规律如图乙所示,现将一质量为m=0.2kg的金属棒MN,从距离磁场上边界ef的一定距离处,从t=0时刻开始由静止释放,金属棒MN从开始运动到经过磁场的下边界ij的过程中,小灯泡的亮度始终不变。金属棒MN在两轨道间的电阻r=1Ω,其余部分的电阻忽略不计,ef、ij边界均垂直于两导轨。重力加速度g=10m/s2。求:
(1)小灯泡的实际功率;
(2)金属棒MN穿出磁场前的最大速率;
(3)整个过程中小灯泡产生的热量。
试题篮
()