某探究小组设计了一个质谱仪,其原理如图所示.一束电量均为,质量不同的带负电的粒子,经过电场加速后进入一速度选择器,从点进入一等腰直角三角形的有界磁场中,又从斜边射出.速度选择器中垂直纸面向里的匀强磁场的磁感应强度为,竖直向下的匀强电场强度为,有界磁场的磁感应强度为,直角边长为,为斜边的中点,两点相距为.求:
(1)带电粒子进入有界磁场的速度大小.
(2)带电粒子质量应满足的条件.
(3)打在斜边上Q点的带电粒子在磁场中运动的时间.
如图所示,s为一电子发射枪,可以连续发射电子束,发射出来的电子初速度可视为0,电子经过平行板A、B之间的加速电场加速后,从o点沿x轴正方向进入xoy平面内,在第一象限内沿x、y轴各放一块平面荧光屏,两屏的交点为o,已知在y>0、0<x<a的范围内有垂直纸面向外的匀强磁场,在y>0、x>a的区域有垂直纸面向里的匀强磁场,大小均为B。已知给平行板AB提供直流电压的电源E可以给平行板AB提供0~U之间的各类数值的电压,现调节电源E的输出电压,从0调到最大值的过程中发现当AB间的电压为U时,x轴上开始出现荧光。(不计电子的重力)试求:
(1)当电源输出电压调至U和U时,进入磁场的电子运动半径之比r1:r2
(2)两荧光屏上的发光亮线的范围。
(12分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,电压的大小为U0,周期为T0。在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=时刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达S2时的速度大小v
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;
(3)若已保证了粒子未与极板相撞,为使粒子在t=T0时刻再次到达S1,而再次进入电场被加速,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。
如图所示,在直角坐标系xOy平面的第Ⅱ象限内有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D(0,R) 两点,圆O1内存在垂直于xOy平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求:
(1)OG之间的距离;
(2)该匀强电场的电场强度E;
(3)若另有一个与A的质量和电荷量相同、速率也相同的粒子A′,从C点沿与x轴负方向成30°角的方向射入磁场,则粒子A′再次回到x轴上某点时,该点的坐标值为多少?
如图a所示,与水平方向成37°角的直线MN下方有与MN垂直向上的匀强电场,现将一重力不计、比荷的正电荷置于电场中的O点由静止释放,经过后,电荷以v0=1.5×l04m/s的速度通过MN进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B按图b所示规律周期性变化(图b中磁场以垂直纸面向外为正,以电荷第一次通过MN时为t=0时刻)。求:
(1)匀强电场的电场强度E;
(2)图b中时刻电荷与第一次通过MN的位置相距多远; (3)如果电荷第一次通过MN的位置到N点的距离d=68cm,在N点上方且垂直MN放置足够大的挡板.求电荷从O点出发运动到挡板所需的时间。
(16分)如图所示,直角坐标系xoy的第一象限内有场强为E方向沿x轴负向的匀强电场,第二象限内有方向沿y轴负向的匀强电场,在的区域内有方向垂直坐标平面的匀强磁场.一质量为m、电荷量为q的正粒子(不计重力),从P()点由静止开始运动, 通过第二象限后经点再进入y≤0区域,并恰好经过坐标原点O.求
(1)第二象限内匀强电场的场强.
(2)y≤0区域内匀强磁场的磁感应强度B.
(3)粒子从P到0经历的时间.
如图所示,真空中有以O1为圆心,r为半径的圆形匀强磁场区域,坐标原点O为圆形磁场边界上的一点。磁场的磁感应强度大小为B,方向垂直于纸面向外。x=r的虚线右侧足够大的范围内有方向竖直向下、大小为E的匀强电场。从O点在纸面内向各个不同方向发射速率相同的质子,设质子在磁场中的偏转半径也为r,已知质子的电荷量为e,质量为m。求:
(1)质子射入磁场时的速度大小;
(2)速度方向沿y轴正方向射入磁场的质子到达x轴所需的时间;
(3)速度方向与y轴正方向成37°角且与x轴正方向成127°角射入磁场的质子到达x轴时的位置坐标。(已知sin37°=0.6,cos37°="0.8)"
英国物理学家麦克斯韦认为,变化磁场会在空间激发感生电场,感生电场对自由电荷做功产生感生电动势。如图甲所示,方向竖直向下的磁场磁感应强度均匀增加,磁感应强度B随时间t的变化规律为B=kt(k为常数),这时产生感生电场的电场线是一系列逆时针方向以0为圆心的同心圆,且同一条电场线上各点的场强大小相等。
(1)在垂直磁场的平面内放一半径为r的导体环,求导体环中产生的感生电动势e;
(2)若在垂直磁场的平面内固定一半径为:的光滑绝缘细管,管内有一质量为m、带电量为+q的轻质小球,如图乙所示,使磁感应强度由零开始增大同时小球在感生电场的作用下,从静止开始运动,已知在半径为r的细管内二周产生的感生电动势e与该处感生电场电场强度E的关系为e=E·2πr,求当磁感应强度增大到B0时,细管对小球的弹力。(设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略,不计小球重力。)
如图所示,光滑绝缘的水平面上有一网状结构的板OA与水平成为30°倾角放置,其左端有一竖直档板,挡板上有一小孔P,已知OA板上方有方向竖直向上、场强大小为E=5V/m的匀强电场,和垂直纸面向外的、磁感应强度大小为B=1T的匀强磁场,现有一质量为m=带电量为q=+的带电小球,从小孔P以速度v=2m/s水平射入上述电场、磁场区域,之后从OA板上的M点垂直OA方向飞出上述的电磁场区域后而进入下方的电磁场区域 ,OA板下方电场方向变为水平向右,电场强度大小为,当小球碰到水平地面时立刻加上匀强磁场,磁感应强度大小仍为B=1T,方向垂直纸面向里。小球与水平地面相碰时,竖直方向速度立刻减为零,水平方向速度不变,小球运动到D处刚好离开水平地面,然后沿着曲线DQ运动,重力加速度为g=10m/s2,小球在水平地面上运动过程中电量保持不变,不计摩擦。
(1)求小球在OA上方空间电磁场中运动时间;
(2)求小球从M运动到D的时间;
(3)若小球在DQ曲线上运动到某处时速率最大为vm,该处轨迹的曲率半径(即把那一段曲线尽可能的微分,近似一个圆弧,这个圆弧对应的半径即曲线上这个点的曲率半径)。求vm与的函数关系。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
如图甲所示,两平行金属板长度l=0.2m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN的匀强磁场,磁感应强度B="0.01" T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO′方向。磁场边界MN与中线OO′垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理的合理性;
(2)设t="0.1" s时刻射入电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试通过推理判断d的大小是否随时间变化?
如图所示,竖直边界PQ左侧有垂直纸面向里的匀强磁场,右侧有竖直向下的匀强电场,场强大小为E,C为边界上的一点,A与C在同一水平线上且相距为L,两相同的粒子以相同的速率分别从A、C两点同时射出,A点射出的粒子初速度沿AC方向,C点射出的粒子初速度斜向左下方与边界PQ成夹角θ=。A点射出的粒子从电场中运动到边界PQ时,两粒子刚好相遇.若粒子质量为m,电荷量为+q,重力不计,求:
(1)粒子初速度v0的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)相遇点到C点的距离.
如图甲所示,MN、PQ是固定于同一水平面内相互平行的粗糙长直导轨,间距L=2.0m;R是连在导轨一端的电阻,质量m=1.0kg的导体棒ab垂直跨在导轨上,电压传感器与这部分装置相连。导轨所在空问有磁感应强度B=0.5T、方向竖直向下的匀强磁场。从t=0开始对导体棒ab施加一个水平向左的外力F,使其由静止开始沿导轨向左运动,电压传感器测出R两端的电压随时间变化的图线如图乙所示,其中OA段是直线,AB段是曲线、BC段平行于时间轴。假设在从1.2s开始以后,外力F的功率P=4.5W保持不变。导轨和导体棒ab的电阻均可忽略不计,导体棒ab在运动过程中始终与导轨垂直,且接触良好。不计电压传感器对电路的影响(g=10m/s2)。求
(1)导体棒ab做匀变速运动的加速度及运动过程中最大速度的大小;
(2)在1.2s~2.4s的时间内,该装置产生的总热量Q;
(3)导体棒ab与导轨间的动摩擦因数μ和电阻R的值。
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图,光滑斜面的倾角= 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 =" l" m,bc边的边长l2=" 0.6" m,线框的质量m =" 1" kg,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M =" 2" kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B =" 0.5" T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s =" 11.4" m,(取g = 10m/s2),求:
(1)线框进入磁场前重物M的加速度;
(2)线框进入磁场时匀速运动的速度v;
(3)ab边由静止开始运动到gh线处所用的时间t;
(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。
试题篮
()