如图所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为L,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大?
电荷量为q=1×10-4C的带正电小物块置于粗糙的绝缘水平面上,所在空间存在沿水平方向的匀强电场,场强E与时间t的关系及物块速度v与时间t的关系如图所示。若重力加速度g取10 m/s2,求:(1)物块的质量m以及物块与水平面之间的动摩擦因数;(2)物块运动2s过程中,其电势能的改变量。
如图所示,A、B是竖直放置的中心带有小孔的平行金属板,两板间的电压为U1=100V,C、D是水平放置的平行金属板,板间距离为d=0.2m,板的长度为L=1m,P是C板的中点,A、B两板小孔连线的延长线与C、D两板的距离相等,将一个负离子从板的小孔处由静止释放,求:
(1)为了使负离子能打在P点,C、D两板间的电压应为多少?哪板电势高?
(2)如果C、D两板间所加的电压为2V,则负离子能打在板上吗?若不能打在板上,它离开电场时发生的侧位移多少?
如图所示,半径为R的光滑绝缘环,竖直放置于电场强度为E的水平匀强电场中,质量为m,带电量为+q的空心小球穿在环上。当小球由静止开始从环的顶点A下滑到与圆心等高的水平位置B时,求:
(1)小球的电势能变化多大?
(2)小球的速度是多大?
(3)小球对环的压力多大?
一束电子流在经U=5000 V的加速电压加速后,在距两极板等距处以速度v0垂直进入平行板间的匀强电场,如图所示,若两板间距d="1.0" cm,板长l="5.0" cm,
(1)当两极板所加电压一定时,电子能从平行板间飞出试证明电子的侧移量y与电子的电量m, 质量 q无关。
(2)要使电子能从平行板间飞出,两个极板上最多能加多大电压?
(3)要使电子能打在下板的中点A处,两个极板所加的电压?
在长为2L的绝缘轻质细杆的两端各连接一个质量均为m的带电小球A和B(可视为质点,也不考虑二者间的相互作用力),A球带正电、电荷量为+2q,B球带负电。电荷量为-3q。现把A和B组成的带电系统锁定在光滑绝缘的水平面上,并让A处于如图所示的有界匀强电场区域MPQN内。已知虚线MP是细杆的中垂线,MP和NQ的距离为4L,匀强电场的场强大小为E,方向水平向右。现取消对A、B的锁定,让它们从静止开始运动。(忽略小球运动中所产生的磁场造成的影响)
(1)求小球A、B运动过程中的最大速度;
(2)小球A、B能否回到原出发点?若不能,请说明理由;若能,请求出经过多长时间带电系统又回到原地发点。
(3)求运动过程中带电小球B电势能增加的最大值。
如图所示,绝缘的水平桌面上方有一竖直方向的矩形区域,该区域是由三个边长均为L的正方形区域ABFE、BCGF和CDHG首尾相接组成的,且矩形的下边EH与桌面相接.三个正方形区域中分别存在方向为竖直向下、竖直向上、竖直向上的匀强电场,其场强大小比例为1:1:2.现有一带正电的滑块以某一初速度从E点射入场区,初速度方向水平向右,滑块最终恰从D点射出场区.已知滑块在ABFE区域所受静电力和所受重力大小相等,桌面与滑块之间的滑动摩擦因素为0.125,重力加速度为g,滑块可以视作质点.求:
(1)滑块进入CDHG区域时的速度大小.
(2)滑块在ADHE区域运动的总时间.
如图甲所示,边长为L的正方形区域A BCD内有竖直向下的匀强电场,电场强度为E,与区域边界BC相距L处竖直放置足够大的荧光屏,荧光屏与AB延长线交于O点.现有一质量为m,电荷量为+q的粒子从A点沿AB方向以一定的初速度进入电场,恰好从BC边的中点P飞出,不计粒子重力.
(1)求粒子进入电场前的初速度的大小.
(2)其他条件不变,增大电场强度使粒子恰好能从CD边的中点Q飞出,求粒子从Q点飞出时的动能.
(3)现将原来电场分成AEFD和EBCF相同的两部分,并将EBCF向右平移一段距离x(x≤L),如图乙所示.设粒子打在荧光屏上位置与O点相距y,请求出y与x的关系.
如图所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T,方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.
求(1)小环所受摩擦力的大小;
(2)Q杆所受拉力的瞬时功率.
如图所示,水平绝缘光滑轨道AB的B端与处于竖直平面内的四分之一圆弧形粗糙绝缘轨道BC平滑连接,圆弧的半径R=0.40m。在轨道所在空间存在水平向右的匀强电场,电场强度E =1.0×104 N/C。现有一质量m=0.10kg的带电体(可视为质点)放在水平轨道上与B端距离s=1.0m的位置,由于受到电场力的作用带电体由静止开始运动,当运动到圆弧形轨道的C端时,速度恰好为零。已知带电体所带电荷q=8.0×10-5C,取g=10m/s2,求:
(1)带电体在水平轨道上运动的加速度大小及运动到B端时的速度大小;
(2)带电体运动到圆弧形轨道的B端时对圆弧轨道的压力大小;
(3)带电体沿圆弧形轨道运动过程中,电场力和摩擦力对带电体所做的功各是多少。
如图所示,在场强E=1×104N/C的水平匀强电场中,有一根长为L=15cm的细线,一端固定在O点,另一端系一个质量m=3g、带电量q=+2×10-6C的小球,当细线处于水平位置,小球在A点从静止开始释放,求:小球到达最低点B时对细线的拉力大小。
质谱仪是一种测定带电粒子质量和分析同位素的重要工具.它的构造原理如图所示,离子源S产生电荷量为q的某种正离子,离子产生时的速度很小,可以看作是静止的,离子经过电压U加速后形成离子流,然后垂直于磁场方向进入磁感应强度为B的匀强磁场,沿着半圆周运动而到达记录它的照相底片P上.实验测得,它在P上的位置到入口处S1的距离为a,离子流的电流为I.请回答下列问题:
(1)在时间t内到达照相底片P上的离子的数目为多少?
(2)单位时间内穿过入口S1处离子流的能量为多大?
(3)试求这种离子的质量m?.
竖直放置的半圆形光滑绝缘管道处在如图所示的匀强磁场中,B=1.1T,管道半径R=0.8m,其直径POQ在竖直线上,在管口P处以2m/s的速度水平射入一个带电小球,可把它视为质点,其电荷量为lO-4C(g=lOm/s2),试求:
(1)小球滑到Q处的速度为多大?
(2)若小球从Q处滑出瞬间,管道对它的弹力正好为零,小球的质量为多少?
质量m=2.0×10-4kg、电荷量q=1.0×10-6C的带正电微粒悬停在空间范围足够大的匀强电场中,电场强度大小为E1.在t=0时刻,电场强度突然增加到E2=4.0×103N/C,场强方向保持不变.到t=0.20s时刻再把电场方向改为水平向右,场强大小保持不变.取g=10m/s2.求:
(1)原来电场强度E1的大小?
(2)t=0.20s时刻带电微粒的速度大小?
(3)带电微粒运动速度水平向右时刻的动能?
试题篮
()