如图所示,相互平行的两根金属导轨竖直放置,导轨间距l=20cm,两导轨顶端连接一开关S。导体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m =10g。整个装置处在与轨道平面垂直的匀强磁场中,磁感应强度B=1T。当ab棒由静止释放t = 0.8s后,突然接通开关S。不计导轨电阻,不计空气阻力,设导轨足够长。g取10m/s2。求:
(1)ab棒的最大速度vm;
(2)ab棒的最终速度vt。
如图所示,平行且足够长的两条光滑金属导轨,相距0.5 m,与水平面夹角为30°,不计电阻,广阔的匀强磁场垂直穿过导轨平面,磁感应强度B=0.4 T,垂直导轨放置两金属棒和,长度均为0.5 m,电阻均为0.1Ω,质量分别为0.1 kg和0.2 kg,两金属棒与金属导轨接触良好且可沿导轨自由滑动。现棒在外力作用下,以恒定速度ν=1.5m/s沿着导轨向上滑动,棒则由静止释放。试求:(取g="10" m/s2)
(1)金属棒产生的感应电动势;
(2)闭合回路中的最小电流和最大电流;
(3)金属棒的最终速度。
如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距m,导轨平面与水平面成角,上端连接阻值为的电阻.匀强磁场方向与导轨平面垂直,磁感应强度T.质量为kg、电阻为的金属棒,以初速度从导轨底端向上滑行,金属棒在安培力和一平行于导轨平面的外力的共同作用下做匀变速直线运动,速度-时间图像如图所示.设金属棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为.(m/s2,,),求:
(1)金属棒产生的感应电动势的最大值和电阻消耗的最大功率?
(2)当金属棒速度为向上3m/s时施加在金属棒上外力F的大小和方向?
(3)请求出金属棒在整个运动过程中外力随时间t变化的函数关系式.
如图所示,abcd为质量M=2 kg的导轨,放在光滑绝缘的水平面,另有一根质量m=0.6 kg的金属棒PQ平行于bc放在水平导轨上,PQ棒左边靠着绝缘的竖直立柱e、f(竖直立柱光滑,且固定不动),导轨处于匀强磁场中,磁场以为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度大小都为B=0.8 T.导轨的bc段长l=0.5 m,其电阻r=0.4Ω,金属棒的电阻R=0.2Ω,其余电阻均可不计.金属棒与导轨间的动摩擦因数m=0.2.若在导轨上作用一个方向向左、大小为F=2N的水平拉力,设导轨足够长,重力加速度g取,试求:
(1)导轨运动的最大加速度;
(2)导轨的最大速度;
(3)定性画出回路中感应电流随时间变化的图线.
如图(a)所示,两根足够长的水平平行金属导轨相距为L=0.5 m,其右端通过导线连接阻值R=0.6Ω的电阻,导轨电阻不计,一根质量为m=0.2 kg、阻值r=0.2Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,金属棒与导轨间的动摩擦因数m=0.5。整个装置处在竖直向下的匀强磁场中,取g=10m/s2。若所加磁场的磁感应强度大小恒为B,通过小电动机对金属棒施加水平向左的牵引力,使金属棒沿导轨向左做匀加速直线运动,经过0.5s电动机的输出功率达到P=10W,此后电动机功率保持不变。金属棒运动的v~t图像如图(b)所示,试求:
(1)磁感应强度B的大小;
(2)在0~0.5s时间内金属棒的加速度a的大小;
(3)在0~0.5s时间内电动机牵引力F与时间t的关系;
(4)若在0~0.3s时间内电阻R产生的热量为0.15J,则在这段时间内电动机做的功。
如图所示,竖直平行导轨间距L=20cm,导轨顶端接有一电键K。导体棒ab与导轨接触良好且无摩擦,ab的电阻R=0.4Ω,质量m=10g,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感强度B=1T。当ab棒由静止释放0.8 s后,突然接通电键,不计空气阻力,设导轨足够长。求ab棒的最大速度和最终速度的大小。(g取10m/s2)
如图9-3-15所示,两根电阻忽略不计的相同金属直角导轨相距为l,它们各有一边在同一水平面内,另一边垂直于水平面,且都是足够长.两金属杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,且最大静摩擦力与滑动摩擦力相等.回路总电阻为R,整个装置处于竖直向上的匀强磁场中.现使杆ab受到F=5.5+1.25t(N)的水平外力作用,从水平导轨的最左端由静止开始向右做匀加速直线运动,杆cd也同时从静止开始沿竖直导轨向下运动.已知:l=2 m,mab=1 kg,mcd=0.1 kg,R=0.4 Ω,μ=0.5,g取10 m/s2.求:
图9-3-15
(1)磁感应强度B的大小;
(2)cd杆下落过程达最大速度时,ab杆的速度大小.
如图所示,两根平行的间距为L=1m的光滑金属导轨(电阻忽略不计)竖直放置,其上端接一阻值为3Ω的定值电阻R。在水平虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B=1T,磁场区域的高度为d=0.5m。导体棒a的质量ma=0.2kg、电阻Ra=3Ω;从图中M处由静止开始在导轨上无摩擦向下滑动,且匀速穿过磁场区域.设重力加速度为g=10m/s2。求:
(1)产生感应电流的大小和方向;
(2)在整个过程中,回路产生的热量;
(3)M距L1的高度。
如图所示,cd、ef是两根电阻不计的光滑金属轨道,其所在的平面与水平面间的夹角为600, 将两导轨用电键s相连,在两导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度为B=0.5T,可在导轨上自由滑动的金属棒的长L=0.5m、质量为m=1.010kg,金属棒电阻为5Ω,设导轨足够长。(g=10m/s2)则:
(1)若先将电键s断开,金属棒由静止开始释放后,经多长时间将s接通,ab恰作匀速运动?
(2)若先将电键s闭合,再将金属棒由静止释放,ab上的最大热功率为多大?
如图所示,间距的足够长的光滑平行金属导轨与水平面成角放置,导轨电阻不计,导轨上端连有的电阻,磁感应强度为的匀强磁场垂直导轨平面向上,时刻有一质量,电阻的金属棒,以的初速度从导轨上某一位置开始沿导轨向上滑行,金属棒垂直导轨且与导轨接触良好,与此同时对金属棒施加一个沿斜面向上且垂直于金属棒的外力,使金属棒做加速度大小为的匀减速直线运动,则:
(1)时,外力的大小?
(2)若已知金属棒运动从开始运动到最高点的过程中,电阻上产生的热量为,求此过程中外力做的功?
(3)到最高点后,撤去外力,经过足够长时间后,最终电阻上消耗的功率是多少?
如图,宽度L=0.5m的光滑金属框架MNPQ固定板个与水平面内,并处在磁感应强度大小B=0.4T,方向竖直向下的匀强磁场中,框架的电阻非均匀分布,将质量m=0.1kg,电阻可忽略的金属棒ab放置在框架上,并且框架接触良好,以P为坐标原点,PQ方向为x轴正方向建立坐标,金属棒从处以的初速度,沿x轴负方向做的匀减速直线运动,运动中金属棒仅受安培力作用。求:
(1)金属棒ab运动0.5m,框架产生的焦耳热Q;
(2)框架中aNPb部分的电阻R随金属棒ab的位置x变化的函数关系;
(3)为求金属棒ab沿x轴负方向运动0.4s过程中通过ab的电量q,某同学解法为:先算出金属棒的运动距离s,以及0.4s时回路内的电阻R,然后代入
q=
求解指出该同学解法的错误之处,并用正确的方法解出结果。
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道足够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和ab进入磁场II时R2上的电功率P2。
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=0.05kg,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在0~1s和2~3s内,对应图线为直线。g=10m/s2)。求:
(1)在0~1s时间内,回路中感应电流I1的大小;
(2)在0~3s时间内,ab杆在水平导轨上运动的最大速度Vm;
(3)已知1~2s内,ab杆做匀加速直线运动,写出1~2s内拉力F随时间t变化的关系式,并在图丙中画出在0~3s内,拉力F随时间t变化的图像。(不需要写出计算过程,只需写出表达式和画出图线)
如图所示,边长为L的正方形金属框,质量为m,电阻为R,用细线把它悬挂于一个有界的匀强磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外.磁场随时间变化规律为B=kt(k>0),已知细线所能承受的最大拉力为2mg,求:
(1)回路中的感应电流大小及方向
(2)从t=0开始,经多长时间细线会被拉断
试题篮
()