如图所示,在x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为45°且斜向上方。现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点进入电场区域,该离子经C点时的速度方向与x轴夹角为45°。不计离子的重力,设磁场区域和电场区域足够大。求:
⑴C点的坐标;
⑵离子从A点出发到第三次穿越x轴时的运动时间;
⑶离子第四次穿越x轴时速度的大小及速度方向与电场方向的夹角。
(13分) 如图所示,足够长的光滑导轨ab、cd固定在竖直平面内,导轨间距为d,b、c两点间接一阻值为r的电阻。ef是一水平放置的导体杆,其质量为m、有效电阻值为r,杆与ab、cd保持良好接触。整个装置放在磁感应强度大小为B的匀强磁场中,磁场方向与导轨平面垂直。现用一竖直向上的力拉导体杆,使导体杆从静止开始做加速度为的匀加速运动,上升了H高度,这一过程中bc间电阻r产生的焦耳热为Q,g为重力加速度,不计导轨电阻及感应电流间的相互作用。求:
⑴导体杆上升到H过程中通过杆的电量;
⑵导体杆上升到H时所受拉力F的大小;
⑶导体杆上升到H过程中拉力做的功。
如图所示,均匀导线制成的单位正方形闭合线框abcd,每边长为L=0.2m,总电阻为R=10Ω,总质量为m=0.04 kg。将其置于磁感强度为B=5T的水平匀强磁场上方h=0.45m处,如图所示。线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行。当cd边刚进入磁场时,(重力加速度取g=10 m/s2)
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h。
如图所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直平面内,管口B、C的连线是水平直径.现有一带正电的小球(可视为质点)从B点正上方的A点自由下落,A、B两点间距离为4R.从小球进入管口开始,整个空间中突然加上一个匀强电场,电场力在竖直向上的分力大小与重力大小相等,结果小球从管口C处脱离圆管后,其运动轨迹经过A点.设小球运动过程中带电量没有改变,重力加速度为g,求:
(1)小球到达B点的速度大小;
(2)小球受到的电场力的大小;
(3)小球经过管口C处时对圆管壁的压力.
(16分)如图所示,在坐标系的第一、四象限存在一宽度为a、垂直纸面向外的有界匀强磁场,磁感应强度的大小为B;在第三象限存在与y轴正方向成θ=60°角的匀强电场。一个粒子源能释放质量为m、电荷量为+q的粒子,粒子的初速度可以忽略。粒子源在点P(,)时发出的粒子恰好垂直磁场边界EF射出;将粒子源沿直线PO移动到Q点时,所发出的粒子恰好不能从EF射出。不计粒子的重力及粒子间相互作用力。求:
⑴匀强电场的电场强度;
⑵PQ的长度;
⑶若仅将电场方向沿顺时针方向转动60º角,粒子源仍在PQ间移动并释放粒子,试判断这些粒子第一次从哪个边界射出磁场并确定射出点的纵坐标范围。
如图所示,两根足够长、相距为L的金属直角导轨,它们各有一边在同一水平面内,另一边垂直于水平面。一绝缘细线跨过导轨直角顶点处定滑轮连接两金属细杆ab、cd,杆通过两端金属小圆环垂直套在导轨上,细杆质量均为m、电阻均为R,整个装置处于磁感强度大小为B,方向竖直向上的匀强磁场中。保持细线拉直后同时无初速释放两细杆,cd杆下降高度h时达到最大速度。 ab杆一直在水平导轨上运动,接触处摩擦及导轨电阻均不计,取重力加速度为g。求:
(1)刚释放时,ab杆的加速度大小;
(2)下滑过程中,cd杆的最大速率;
(3)从开始释放到刚好达到最大速度的过程中整个回路所产生的热量。
如图甲所示,一正方形金属线框位于有界匀强磁场区域内,线框的右边紧贴着边界.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动,经过时间t0穿出磁场.图乙所示为外力F随时间t变化的图象.若线框质量为m、电阻R及图象中的F0、t0均为已知量,则根据上述条件,请你推出:
(1)磁感应强度B的表达式;
(2)线框左边刚离开磁场前瞬间的感应电动势E的表达式.
如图所示,在x<0的区域内存在沿y轴负方向的匀强电场,在第一象限倾斜直线OM的下方和第四象限内存在垂直纸面向里的匀强磁场。一带电粒子自电场中的P点沿x轴正方向射出,恰好经过坐标原点O进入匀强磁场,经磁场偏转后垂直于y轴从N点回到电场区域,并恰能返回P点。已知P点坐标为,带电粒子质量为m,电荷量为q,初速度为v0,不计粒子重力。求:
(1)匀强电场的电场强度大小;
(2)N点的坐标;
(3)匀强磁场的磁感应强度大小。
如图所示,固定于水平桌面上足够长的两平行光滑导轨PQ、MN,其电阻不计,间距d=0.5m,P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B=0.2T的匀强磁场中,两金属棒ab、cd垂直导轨放置,其电阻均为r=0.1Ω,质量均为m=0.5kg,与导轨接触良好。现固定棒ab,使cd在水平恒力F=0.8N的作用下,由静止开始做加速运动。求
(1)棒cd哪端电势高?
(2)当电压表读数为U=0.2V时,棒cd的加速度多大?
(3)棒cd能达到的最大速度vm。
如图所示,在直角坐标系xOy平面的第Ⅱ象限内有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D(0,R) 两点,圆O1内存在垂直于xOy平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求:
(1)OG之间的距离;
(2)该匀强电场的电场强度E;
(3)若另有一个与A的质量和电荷量相同、速率也相同的粒子A′,从C点沿与x轴负方向成30°角的方向射入磁场,则粒子A′再次回到x轴上某点时,该点的坐标值为多少?
如下图a所示,为一组间距d足够大的平行金属板,板间加有随时间变化的电压(如图b所示),设U0和T已知。A板上O处有一静止的带电粒子,其带电量为q,质量为m(不计重力),在t = 0时刻起该带电粒子受板间电场加速向B板运动,途中由于电场反向,粒子又向A板返回(粒子未曾与B板相碰)。
(1)当Ux=2U0时求带电粒子在t=T时刻的动能;
(2)为使带电粒子在t=T时刻恰能能回到O点,Ux等于多少?
如图所示是说明示波器工作原理的示意图,已知两平行板间的距离为d、板长为.初速度为零的电子经电压为U1的电场加速后从两平行板间的中央处垂直进入偏转电场,设电子质量为m、电荷量为e .求:
(1)经电场加速后电子速度v的大小;
(2)要使电子离开偏转电场时的偏转量最大,两平行板间的电压U2应是多大?
(15分)如图所示,正三角形ABC内有B=0.1T的匀强磁场,方向垂直纸面向外,在BC边右侧有平行于BC足够长的挡板EF,已知B点到挡板的水平距离BD=0.5m。某一质量m=4×10-10kg,电荷量q=1×10-4C的粒子,以速度:v0=1×104m/s自A点沿磁场中的AB边射入,恰可从BC边水平射出打到挡板上。不计粒子重力。
(1)求粒子从BC边射出时,射出点距C点的距离和粒子在磁场中运动的时间。
(2)如果在BC至EF区域加上竖直向下的匀强电场,使粒子仍能打到挡板上,求所加电场电场强度的最大值。
英国物理学家麦克斯韦认为,变化磁场会在空间激发感生电场,感生电场对自由电荷做功产生感生电动势。如图甲所示,方向竖直向下的磁场磁感应强度均匀增加,磁感应强度B随时间t的变化规律为B=kt(k为常数),这时产生感生电场的电场线是一系列逆时针方向以0为圆心的同心圆,且同一条电场线上各点的场强大小相等。
(1)在垂直磁场的平面内放一半径为r的导体环,求导体环中产生的感生电动势e;
(2)若在垂直磁场的平面内固定一半径为:的光滑绝缘细管,管内有一质量为m、带电量为+q的轻质小球,如图乙所示,使磁感应强度由零开始增大同时小球在感生电场的作用下,从静止开始运动,已知在半径为r的细管内二周产生的感生电动势e与该处感生电场电场强度E的关系为e=E·2πr,求当磁感应强度增大到B0时,细管对小球的弹力。(设小球在运动过程中电荷量保持不变,对原磁场的影响可忽略,不计小球重力。)
在地面上方某处的真空室里存在着水平向左的匀强电场,以水平向右和竖直向上为x轴、y轴正方向建立如图所示的平面直角坐标系。一质量为m、电荷量为+q的微粒从点P(,0)由静止释放后沿直线PQ运动。当微粒到达点Q(0,-l)的瞬间,撤去电场同时加上一个垂直于纸面向外的匀强磁场(图中未画出),磁感应强度的大小,该磁场有理想的下边界,其他方向范围无限大。已知重力加速度为g。求:
(1)匀强电场的场强E的大小;
(2)撤去电场加上磁场的瞬间,微粒所受合外力的大小和方向;
(3)欲使微粒不从磁场下边界穿出,该磁场下边界的y轴坐标值应满足什么条件?
试题篮
()