(18分) 在直角坐标系第一象限与第三象限分布有如图所示的匀强磁场和匀强电场,电场强度为E、磁感应强度为;现在第三象限中从P点以初速度沿x轴方向发射质量为,带的离子,离子经电场后恰从坐标原点O射入磁场。
(1)已知P点的纵坐标为,试求P点的横坐标x;
(2)若离子经O点射入磁场时的速度为2,试求离子在磁场中运动的时间及磁场出射点距O点的距离d。
如图所示,在直角坐标系内,有一质量为,电荷量为的粒子A从原点O沿y 轴正方向以初速度射出,粒子重力忽略不计,现要求该粒子能通过点P(a, -b),可通过在粒子运动的空间范围内加适当的“场”实现。
(1) 若只在整个I、II象限内加垂直纸面向外的匀强磁场,使粒子A在磁场中作匀速圆周运动,并能到达P点,求磁感应强度B的大小;
(2) 若只在x轴上某点固定一带负电的点电荷Q, 使粒子A在Q产生的电场中作匀速圆周运动,并能到达P点,求点电荷Q的电量大小;
(3) 若在整个I、II象限内加垂直纸面向外的匀强磁场,并在第IV象限内加平行于x轴,沿x轴正方向的匀强电场,也能使粒子A运动到达P点。如果此过程中粒子A在电、磁场中运动的时间相等,求磁感应强度B的大小和电场强度E的大小
如图所示,在xoy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O射入磁场,其入射方向与y的方向成45°角。当粒子运动到电场中坐标为(3L,L)的P点处时速度大小为v0,方向与x轴正方向相同。求:
(1)粒子从O点射入磁场时的速度v;
(2)匀强电场的场强E0和匀强磁场的磁感应强度B0;
(3)粒子从O点运动到P点所用的时间.
如图所示,在XOY直角坐标系中,OQ与OP分别与X轴正负方向成450,在POQ区域中存在足够大的匀强电场,场强大小为E,其余区域存在匀强磁场,一带电量为+q的质量为m粒子在Y轴上A点(0,-L)以平行于X轴速度v0进入第四象项,在QO边界垂直进入电场,后又从PO边界离开电场,不计粒子的重力.
求(1)匀强磁场的磁感应强度大小?
(2)粒子从PO进入磁场的位置坐标?
如图甲所示,两平行金属板长度l=0.2m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN的匀强磁场,磁感应强度B="0.01" T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO′方向。磁场边界MN与中线OO′垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理的合理性;
(2)设t="0.1" s时刻射入电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d,试通过推理判断d的大小是否随时间变化?
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
如图所示,在平面内的第一象限内存在沿轴正方向的匀强电场,在第四象限存在有界的磁场,磁感应强度,有一质量为,电量为的电子以的速度从轴的点(0,cm)沿轴正方向射入第一象限,偏转后从轴的点射入第四象限,方向与轴成角,在磁场中偏转后又回到点,方向与轴也成角;不计电子重力.求:
(1)OQ之间的距离及电子通过Q点的速度大小.
(2)若在第四象限内的磁场的边界为直线边界,即在虚线的下方有磁场,如图中所示,求的坐标.
(3)若在第四象限内的磁场为圆形边界的磁场,圆形边界的磁场的圆心坐标的范围.
如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两板外无电场,板长L="0.2" m,板间距离d="0.2" m.在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10 3T,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0=105 m/s,比荷q/m=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.
(1)试求带电粒子射出电场时的最大速度;
(2)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场,求粒子在磁场中运动的最长时间和最短时间.
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1kg的导体棒。从零时刻开始,对ab施加一个大小为F=0.45N,方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且良好接触,图乙是棒的v-t图像,其中AO是图像在O点的切线,AB是图像的渐近线。除R以外,其余部分的电阻均不计。设滑动摩擦力等于最大静摩擦力。已知当棒的位移为100m时,其速度达到了最大速度10m/s。求:
(1)R的阻值;
(2)棒ab在题述运动过程中克服摩擦力做的功;
(3)在题述过程中电阻R上产生的焦耳热。
如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为Bo的匀强磁场;在xoy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场。一质量为m、电量为q的正离子(不计重力)以初速度Vo沿平行于金属板方向射入两板间并做匀速直线运动。从P点垂直y轴进入第一象限,经过x轴上的A点射出电场,进入磁场。已知离子过A点时的速度方向与x轴成45o角。求:
(1)金属板M、N间的电压U;
(2)离子运动到A点时速度V的大小和由P点运动到A点所需时间t;
(3)离子第一次离开第四象限磁场区域的位置C(图中未画出)与坐标原点的距离OC。
如图,直线MN 上方有平行于纸面且与MN成45°的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B.今从MN 上的O点向磁场中射入一个速度大小为v、方向与MN成45°角的带正电粒子,该粒子在磁场中运动时的轨道半径为R .该粒子从O点出发记为第一次经过直线MN ,第五次经过直线MN时恰好又通过O点.不计粒子的重力.
(1)画出粒子在磁场和电场中运动轨迹的草图;
(2)求出电场强度E的大小;
(3)求该粒子再次从O点进入磁场后,运动轨道的半径r;
(4)求该粒子从O点出发到再次回到O点所需的时间t ;
如图甲所示,两块长为L(L未知)的平行金属板M、N,彼此正对,板间距亦为L。现将N板接地,M上电势随时间变化规律如图乙所示。两平行金属板左边缘的中线处放置一个粒子源,能沿中线方向连续不断地放出一定速度的带正电粒子。已知带电粒子的荷质比,粒子的重力和粒子之间的作用力均可忽略不计。若某时刻粒子源放出的粒子恰能从平行金属板右边缘离开电场(设在每个粒子通过电场区域的时间内,可以把板间的电场看作是恒定的),同时进入金属板右方磁感强度为T,方向垂直纸面向里的匀强磁场中,一段时间后正粒子垂直打在屏PQ上,屏PQ与金属板右边缘的距离为d=0.5m。
求
①粒子在磁场中的速度?
②为完成以上运动带电粒子应在哪个时刻进入电场?
、传送带和水平面的夹角为37°,完全相同的两轮和皮带的切点A、B间的距离为24m, B点右侧(B点在场的边缘)有一上下无限宽左右边距为d的正交匀强电场和匀强磁场,电场方向竖直向上,匀强磁场垂直于纸面向里,磁感应强度B=103T.传送带在电机带动下,以4m/s速度顺时针匀速运转,现将质量为m=0.1kg,电量q=+10-2C的物体(可视为质点)轻放于传送带的A点,已知物体和传送带间的摩擦系数为μ=0.8,物体在运动过程中电量不变,重力加速度取g=10m/s2,sin37°=0.6,cos37°=0.8.求:
(1)物体从A点传送到B点的时间?
(2)若物体从B点进入混合场后做匀速圆周运动,则所加的电场强度的大小E应为多少?物体仍然从混合场的左边界出混合场,则场的右边界距B点的水平距离d至少等于多少?
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图,光滑斜面的倾角= 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 =" l" m,bc边的边长l2=" 0.6" m,线框的质量m =" 1" kg,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M =" 2" kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B =" 0.5" T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s =" 11.4" m,(取g = 10m/s2),求:
(1)线框进入磁场前重物M的加速度;
(2)线框进入磁场时匀速运动的速度v;
(3)ab边由静止开始运动到gh线处所用的时间t;
(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。
试题篮
()