如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为l=0.5 m,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m=0.02 kg,电阻均为R=0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能够保持静止.取g=10 m/s2,问:
(1)通过棒cd的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)棒cd每产生Q=0.1 J的热量,力F做的功W是多少?
如图所示,一边长L= 0.2m,质量m1=0.5kg,电阻R= 0.1Ω的正方形导体线框abcd,与一质量为m2=2kg的物块通过轻质细线跨过两光滑的定滑轮相连。起初ad边距磁场下边界为d2=0.8m,磁感应强度B=2.5T,磁场宽度d1="0." 3m,物块放在倾角θ=53°的斜面上,物块与斜面间的动摩擦因数μ=0.5。现将物块m1由静止释放,经一段时间后发现当ad边从磁场上边缘穿出时,线框恰好做匀速运动。(g取10m/s,sin53°=0.8,cos53°= 0.6)求:
(1)线框ad边从磁场上边缘穿出时速度的大小?
(2)线框刚好全部进入磁场时动能的大小?
(3)整个运动过程线框产生的焦耳热为多少?
如图甲所示,水平直线MN下方有竖直向上的匀强电场,场强E=N/C。现将一重力不计、比荷
C/kg的正电荷从电场中的O点由静止释放,经过t0=1×10-5s后,通过MN上的P点进入其上方的匀强磁场。磁场方向垂直于纸面向外,以电荷第一次通过MN时开始计时,磁感应强度按图乙所示规律周期性变化。
(1)求电荷进入磁场时的速度v0;
(2)求图乙中t=2×10-5s时刻电荷与P点的距离;
(3)如果在P点右方d=105 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间(保留三位有效数字)。
图(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n =100匝、电阻r =10W,线圈的两端经集流环与电阻R连接,电阻R =" 90" Ω,与R并联的交流电压表为理想电表。在t =0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量F随时间t按图15(乙)所示正弦规律变化。 求:
(1) 从1.57×10-2s到4.71×10-2s内通过电阻R上的电量q。
(2)电路中交流电压表的示数。
(3)线圈匀速转动一周的过程中,外力所做的功W外。
如图甲所示,空间存在B=0.5T,方向竖直向下的匀强磁场,MN、PQ是水平放置的平行长直导轨,其间距L=0.2m,R是连在导轨一端的电阻,ab是跨接在导轨上质量m=0.1kg的导体棒。从零时刻开始,对ab施加一个大小为F=0.45N,方向水平向左的恒定拉力,使其从静止开始沿导轨滑动,滑动过程中棒始终保持与导轨垂直且良好接触,图乙是棒的v-t图像,其中AO是图像在O点的切线,AB是图像的渐近线。除R以外,其余部分的电阻均不计。设滑动摩擦力等于最大静摩擦力。已知当棒的位移为100m时,其速度达到了最大速度10m/s。求:
(1)R的阻值;
(2)棒ab在题述运动过程中克服摩擦力做的功;
(3)在题述过程中电阻R上产生的焦耳热。
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:
(1)质子刚进入电场时的速度方向和大小;
(2)OC间的距离;
(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
如图所示,在铅板A上放一个放射源C可向各个方向射出速率为的
射线,B为金属网,A、B连接在电路上,电源电动势为
,内阻为
,滑动变阻器总阻值为
,图中滑动变阻器滑片置于中点,A、B间距为d,M为荧光屏(足够大),它紧挨者金属网外侧,已知
粒子的质量为
,不计
射线所形成的电流对电路的影响,求:
(1)闭合开关S后,AB间的场强的大小是多少?
(2)粒子到达金属网B的最长时间?
(3)切断开关S,并撤去金属网B,加上垂直纸面向内、范围足够大的匀强磁场,磁感应强度大小为B,设加上B后粒子仍能到达荧光屏。这时在竖直方向上能观察到荧光屏亮区的长度是多少?
两根相距L=0.5m的足够长的金属导轨如图甲所示放置,他们各有一边在同一水平面上,另一边垂直于水平面。金属细杆ab、cd的质量均为m=0.05kg,电阻均为R=1.0Ω,它们与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数μ=0.5,导轨电阻不计。整个装置处于磁感应强度大小B=1.0T、方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下沿导轨向右运动时,从某一时刻开始释放cd杆,并且开始计时,cd杆运动速度随时间变化的图像如图乙所示(在0~1s和2~3s内,对应图线为直线。g=10m/s2)。求:
(1)在0~1s时间内,回路中感应电流I1的大小;
(2)在0~3s时间内,ab杆在水平导轨上运动的最大速度Vm;
(3)已知1~2s内,ab杆做匀加速直线运动,写出1~2s内拉力F随时间t变化的关系式,并在图丙中画出在0~3s内,拉力F随时间t变化的图像。(不需要写出计算过程,只需写出表达式和画出图线)
如图(a)所示,两根足够长的水平平行金属导轨相距为L=0.5 m,其右端通过导线连接阻值R=0.6Ω的电阻,导轨电阻不计,一根质量为m=0.2 kg、阻值r=0.2Ω的金属棒ab放在两导轨上,棒与导轨垂直并保持良好接触,金属棒与导轨间的动摩擦因数m=0.5。整个装置处在竖直向下的匀强磁场中,取g=10m/s2。若所加磁场的磁感应强度大小恒为B,通过小电动机对金属棒施加水平向左的牵引力,使金属棒沿导轨向左做匀加速直线运动,经过0.5s电动机的输出功率达到P=10W,此后电动机功率保持不变。金属棒运动的v~t图像如图(b)所示,试求:
(1)磁感应强度B的大小;
(2)在0~0.5s时间内金属棒的加速度a的大小;
(3)在0~0.5s时间内电动机牵引力F与时间t的关系;
(4)若在0~0.3s时间内电阻R产生的热量为0.15J,则在这段时间内电动机做的功。
一个“”形导轨PONQ,其质量为M="2.0" kg,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m="0.60" kg的金属棒CD跨放在导轨上,CD与导轨的动摩擦因数是0.20,CD棒与ON边平行,左边靠着光滑的固定立柱a、b,匀强磁场以ab为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80 T,如图所示。已知导轨ON段长为0.50 m,电阻是0.40 Ω,金属棒CD的电阻是0.20 Ω,其余电阻不计.导轨在水平拉力作用下由静止开始以0.20 m/s2的加速度做匀加速直线运动,一直到CD中的电流达到4.0 A时,导轨改做匀速直线运动.设导轨足够长,取g=10 m/s2。求:
⑴导轨运动起来后,C、D两点哪点电势较高?
⑵导轨做匀速运动时,水平拉力F的大小是多少?
⑶导轨做匀加速运动的过程中,水平拉力F的最小值是多少?
⑷CD上消耗的电功率为P="0.80" W时,水平拉力F做功的功率是多大?
(14分)如图所示,直角坐标系中,M点的横坐标
区域内,有竖直向下的匀强电场;N点的横坐标
以N为圆心、r为半径的圆内及圆边界上有垂直于纸面向里的匀强磁场.P为磁场边界上一点.NP与竖直方向的夹角
.从M点沿
轴正方向发射一质量为m、电荷量为q的带负电粒子,粒子速度大小为
,粒子沿过P点的切线方向射出电场。后经P点进人磁场运动且经过N点,不计粒子重力,
求:
(1)匀强电场的电场强度E;
(2)勾强磁场的磁感应强度B;
(3)粒子从M点到第一次经过N点所用的时间t.
如图所示装置由加速电场、偏转电场和偏转磁场组成。偏转电场处在加有电压的相距为d的两块水平平行放置的导体板之间,匀强磁场水平宽度为l,竖直宽度足够大,处在偏转电场的右边,如图甲所示。大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场。当两板没有加电压时,这些电子通过两板之间的时间为2t0,当在两板间加上如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均能通过电场,穿过磁场,最后打在竖直放置的荧光屏上(已知电子的质量为m、电荷量为e)。求:
(1)如果电子在t=0时刻进入偏转电场,求它离开偏转电场时的侧向位移大小;
(2)通过计算说明,所有通过偏转电场的电子的偏向角(电子离开偏转电场的速度方向与进入电场速度方向的夹角)都相同。
(3)要使电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向。在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合。M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e的质子,以初速度v0沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,不计质子的重力,试求:
(1)N点横坐标d;
(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间。
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
试题篮
()