如图为某同学设计的速度选择装置,两根足够长的光滑导轨/和
间距为L与水平方向成
角,上端接滑动变阻器R,匀强磁场
垂直导轨向上,金属棒ab质量为
垂直横跨在导轨上。滑动变阻器R两端连接水平放置的平行金属板,极板间距为d,板长为2d,匀强磁场B垂直纸面向内。粒子源能发射沿水平方向不同速率的带电粒子,粒子的质量为
,电荷量为q,ab棒的电阻为r,滑动变阻器的最大阻值为2r,其余部分电阻不计,不计粒子重力。
(1)ab棒静止未释放时,某种粒子恰好打在上极板中点P上,该粒子带何种电荷?该粒子的速度多大?
(2)调节变阻器使R=0.5r,然后释放ab棒,求ab棒的最大速度?
(3)当ab棒释放后达到最大速度时,若变阻器在范围调节,总有粒子能匀速穿过平行金属板,求这些粒子的速度范围?
某探究小组设计了一个质谱仪,其原理如图所示.一束电量均为,质量不同的带负电的粒子,经过电场加速后进入一速度选择器,从
点进入一等腰直角三角形的有界磁场中,又从斜边射出.速度选择器中垂直纸面向里的匀强磁场的磁感应强度为
,竖直向下的匀强电场强度为
,有界磁场的磁感应强度为
,直角边长为
,
为斜边的中点,
两点相距为
.求:
(1)带电粒子进入有界磁场的速度大小.
(2)带电粒子质量应满足的条件.
(3)打在斜边上Q点的带电粒子在磁场中运动的时间.
如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B="0.10" T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外,两区域切点为C.今有质量m=3.2×10-26 kg、带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直射入磁场,它将穿越C点后再从右侧区穿出.求:
该离子通过两磁场区域所用的时间.
离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离).
如图,光滑斜面的倾角= 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 =" l" m,bc边的边长l2=" 0.6" m,线框的质量m =" 1" kg,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M =" 2" kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B =" 0.5" T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s =" 11.4" m,(取g = 10m/s2),求:
(1)线框进入磁场前重物M的加速度;
(2)线框进入磁场时匀速运动的速度v;
(3)ab边由静止开始运动到gh线处所用的时间t;
(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。
(18分) 如图甲所示,长为l、相距为d的两块正对的平行金属板AB和CD与一电源相连(图中未画出电源),B、D为两板的右端点,两板间电压的变化如图乙所示,在金属板B、D端的右侧有一与金属板垂直放置的荧光屏MN,荧光屏距B、D端的距离为l,质量为m,电荷量为e的电子以相同的初速度v0从极板左边中央沿平行极板的直线O1O2连续不断地射入。已知所有的电子均能够从金属板间射出,且每个电子在电场中运动的时间与电压变化的周期相等,忽略极板边缘处电场的影响,不计电子的重力以及电子之间的相互作用。求
(1)t=0和t=T/2时刻进入两板间的电子到达金属板B、D端界面时偏离O1O2的距离之比
(2)两板间电压U0的最大值
(3)电子在荧光屏上分布的最大范围
如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3。不计重力和两粒子之间的相互作用力。求
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
如图甲所示,水平直线MN下方有竖直向上的匀强电场,场强E=N/C。现将一重力不计、比荷
C/kg的正电荷从电场中的O点由静止释放,经过t0=1×10-5s后,通过MN上的P点进入其上方的匀强磁场。磁场方向垂直于纸面向外,以电荷第一次通过MN时开始计时,磁感应强度按图乙所示规律周期性变化。
(1)求电荷进入磁场时的速度v0;
(2)求图乙中t=2×10-5s时刻电荷与P点的距离;
(3)如果在P点右方d=105 cm处有一垂直于MN的足够大的挡板,求电荷从O点出发运动到挡板所需的时间(保留三位有效数字)。
质量m=2.0×10-4kg、电荷量q=1.0×10-6C的带正电微粒悬停在空间范围足够大的匀强电场中,电场强度大小为E1.在t=0时刻,电场强度突然增加到E2=4.0×103N/C,场强方向保持不变.到t=0.20s时刻再把电场方向改为水平向右,场强大小保持不变.取g=10m/s2.求:原来电场强度E1的大小?
t=0.20s时刻带电微粒的速度大小?
带电微粒运动速度水平向右时刻的动能?
如图所示,一条长为L的绝缘细线上端固定,下端拴一质量为m的带电小球,将它置于水平方向的匀强电场中,电场强度为E,已知当细线与竖直方向的夹角为α时,小球处于平衡位置A点,问在平衡位置给小球多大的速度vA,刚好能使之在电场中作竖直平面内的完整圆周运动?
如图所示,在以原点O为圆心、半径为R的半圆形区域内充满了磁感应强度为B的匀强磁场,x轴下方为一平行板电容器,其正极板与x轴重合且在O处开有小孔,两极板间距离为。现有电荷量为e、质量为m的电子在O点正下方负极板上的P点由静止释放。不计电子所受重力。
(1)若电子在磁场中运动一段时间后刚好从磁场的最右边缘处返回到x轴上,求加在电容器两极板间的电压。
(2)将两极板间的电压增大到原来的4倍,先在P处释放第一个电子,在这个电子刚到达O点时释放第二个电子,求
①第一个电子在电场中和磁场中运动的时间之比
②第一个电子离开磁场时,第二个电子的位置坐标。
如图,在平面第一象限整个区域分布匀强电场,电场方向平行
轴向下,在第四象限内存在有界匀强磁场,左边界为
轴,右边界为
的直线,磁场方向垂直纸面向外。质量为
、带电量为
的粒子从
轴上
点以初速度
垂直
轴射入匀强电场,在电场力作用下从
轴上
点以与
轴正方向成45°角进入匀强磁场。已知
,不计粒子重力。求:
(1)点坐标;
(2)要使粒子能再进入电场,磁感应强度的取值范围;
(3)要使粒子能第二次进入磁场,磁感应强度的取值范围。
中心均开有小孔的金属板C、D与半径为d的圆形单匝金属线圈连接,圆形框内有垂直纸面的匀强磁场,大小随时间变化的关系为B=kt(k未知且k>0),E、F为磁场边界,且与C、D板平行。D板右方分布磁场大小均为B0,方向如图所示的匀强磁场。区域Ⅰ的磁场宽度为d,区域Ⅱ的磁场宽度足够。在C板小孔附近有质量为m、电量为q的负离子由静止开始加速后,经D板小孔垂直进入磁场区域Ⅰ,不计离子重力。
(1)判断圆形线框内的磁场方向;
(2)若离子从C板出发,运动一段时间后又恰能回到C板出发点,求离子在磁场中运动的总时间;
(3)若改变圆形框内的磁感强度变化率k,离子可从距D板小孔为2d的点穿过E边界离开磁场,求圆形框内磁感强度的变化率k是多少?
如图所示,竖直边界PQ左侧有垂直纸面向里的匀强磁场,右侧有竖直向下的匀强电场,场强大小为E,C为边界上的一点,A与C在同一水平线上且相距为L,两相同的粒子以相同的速率分别从A、C两点同时射出,A点射出的粒子初速度沿AC方向,C点射出的粒子初速度斜向左下方与边界PQ成夹角θ=。A点射出的粒子从电场中运动到边界PQ时,两粒子刚好相遇.若粒子质量为m,电荷量为+q,重力不计,求:
(1)粒子初速度v0的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)相遇点到C点的距离.
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
试题篮
()