如图所示,水平线QC下方是水平向左的匀强电场;区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度为B;区域Ⅱ(三角形APD)内也有垂直纸面向里的匀强磁场,但是磁感应强度大小可以与区域Ⅰ不同;区域Ⅲ(虚线PD之上、三角形APD以外)有垂直纸面向外的匀强磁场,磁感应强度与区域Ⅱ内磁感应大小相等。三角形AQC是边长为2L的等边三角形,P、D分别为AQ、AC的中点.带正电的粒子从Q点正下方、距离Q点为L的O点以某一速度射出,在电场力作用下从QC边中点N以速度v0垂直QC射入区域Ⅰ,接着从P点垂直AQ射入区域Ⅲ。若区域Ⅱ、Ⅲ的磁感应强度大小与区域Ⅰ的磁感应强度满足一定的关系,此后带电粒子又经历一系列运动后又会以原速率返回O点.(粒子重力忽略不计)求:
(1)该粒子的比荷;
(2)粒子从O点出发再回到O点的整个运动过程所有可能经历的时间.
(19分)如图所示,边长为的正方形PQMN区域内(含边界)有垂直纸面向外的匀强磁场,左侧有水平向右的匀强电场,场强大小为,质量为、电荷量为的带正电粒子从O点由静止开始释放,O、P、Q三点在同一水平直线上,OP=L,带电粒子恰好从M点离开磁场,不计带电粒子重力,求:
(1)磁感应强度大小;
(2)粒子从O点运动到M点经历的时间;
(3)若磁场磁感应强度可调节(不考虑磁场变化产生的电磁感应),带电粒子从边界NM上的点离开磁场,与N点距离为,求磁场磁感应强度的可能数值.
如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d的平行板电容器与总阻值为的滑动变阻器通过平行导轨连接,电阻为的导体棒MN可在外力的作用下沿导轨从左向右做匀速直线运动。当滑动变阻器的滑动触头位于a、b的中间位置、导体棒MN的速度为时,位于电容器中P点的带电油滴恰好处于静止状态.若不计摩擦和平行导轨及导线的电阻,重力加速度为g,则下列判断正确的是( )
A.油滴带正电荷 |
B.若将上极板竖直向上移动距离d,油滴将向上加速运动,加速度 |
C.若将导体棒的速度变为,油滴将向上加速运动,加速度a=2g |
D.若保持导体棒的速度为不变,而将滑动触头置于a位置,同时将电容器上极板向上移动距离d/3,油滴仍将静止 |
电偏转和磁偏转技术在科学上有着广泛的应用,如图所示的装置中,AB、CD间的区域有竖直方向的匀强电场,在CD的右侧有一与CD相切于M点的圆形有界匀强磁场,磁场方向垂直于纸面。一带电粒子自O点以水平初速度正对P点进入该电场后,从M点飞离CD边界时速度为,再经磁场偏转后又从N点垂直于CD边界回到电场区域,并恰能返回O点。已知OP间距离为,粒子质量为,电量为,粒子自身重力忽略不计。试求:
(1)P、M两点间的距离;
(2)返回O点时的速度大小;
(3)磁感强度的大小和有界匀强磁场区域的面积。
图(甲)为小型旋转电枢式交流发电机的原理图,其矩形线圈在匀强磁场中绕垂直于磁场方向的固定轴OO′匀速转动,线圈的匝数n =100匝、电阻r =10W,线圈的两端经集流环与电阻R连接,电阻R =" 90" Ω,与R并联的交流电压表为理想电表。在t =0时刻,线圈平面与磁场方向平行,穿过每匝线圈的磁通量F随时间t按图15(乙)所示正弦规律变化。 求:
(1) 从1.57×10-2s到4.71×10-2s内通过电阻R上的电量q。
(2)电路中交流电压表的示数。
(3)线圈匀速转动一周的过程中,外力所做的功W外。
如图所示,相距为R的两块平行金属板M、 N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.
(1)M、N间的电压为U时,求粒子进入磁场时速度的大小v;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求
t的最小值.
如图所示,真空中有以O′为圆心,r为半径的圆形匀强磁场区域,磁场方向垂直纸面向外,磁感应强度为B。圆的最下端与x轴相切于直角坐标原点O,圆的右端与平行于y轴的虚线MN相切,在虚线MN右侧x轴上方足够大的范围内有方向竖直向下、场强大小为E的匀强电场,在坐标系第四象限存在方向垂直纸面向里、磁感应强度大小也为B的匀强磁场,现从坐标原点O沿y轴正方向发射速率相同的质子,质子在磁场中做半径为r的匀速圆周运动,然后进入电场到达x轴上的C点。已知质子带电量为+q,质量为m,不计质子的重力、质子对电磁场的影响及质子间的相互作用力。求:
(1)质子刚进入电场时的速度方向和大小;
(2)OC间的距离;
(3)若质子到达C点后经过第四限的磁场后恰好被放在x轴上D点处(图上未画出)的一检测装置俘获,此后质子将不能再返回电场,则CD间的距离为多少。
如图(甲)所示,两个水平和倾斜光滑直导轨都通过光滑圆弧对接而成,相互平行放置,两导轨相距L=lm,倾斜导轨与水平面成角,倾斜导轨的下面部分处在一垂直斜面的匀强磁场区I中,I区中磁场的磁感应强度B1随时间变化的规律如图(乙)所示垂直斜面向上为正值,图中t1、t2未知。水平导轨足够长,其左端接有理想灵敏电流计G(内阻不计)和定值电阻R=3,水平导轨处在一竖直向上的匀强磁场区Ⅱ中,Ⅱ区中的磁场恒定不变,磁感应强度大小为B2=1T,在t=0时刻,从斜轨上磁场I区外某处垂直于导轨水平静止释放一金属棒ab,棒的质量m=0.l kg,棒的电阻r=2,棒下滑时与导轨保持良好接触设棒通过光滑圆弧前后速度大小不变,导轨的电阻不计。若棒在斜面上向下滑动的整个过程中,灵敏电流计指针稳定时显示的电流大小相等,t2时刻进入水平轨道,立刻对棒施一平行于框架平面沿水平且与杆垂直的外力。(g取10m/s2)求:
(1)ab棒进入磁场区I时速度V的大小;
(2)磁场区I在沿斜轨方向上的宽度d;
(3)棒从开始运动到刚好进入水平轨道这段时间内ab棒上产生的热量Q;
(4)若棒在t2时刻进入水平导轨后,电流计G的电流I随时间t变化的关系如图(丙)所示(而未知),已知t2到t3的时间为0.5s,t3到t4的时间为1s,请在图(丁)中作出t2到t4时间内外力大小F随时间t变化的函数图像。(从上向下看逆时针方向为电流正方向)
如图所示,光滑斜面的倾角=30°,在斜面上放置一矩形线框abcd,ab边的边长l1=lm,bc边的边长l2=0.6m,线框的质量m=1kg,电阻R=0.1Ω,线框受到沿光滑斜面向上的恒力F的作用,已知F=10N.斜面上ef线(ef∥gh)的右方有垂直斜面向上的均匀磁场,磁感应强度B随时间t的变化情况如B-t图象,时间t是从线框由静止开始运动时刻起计的.如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s=5.1m,求:
(1)线框进入磁场时匀速运动的速度v;
(2)ab边由静止开始到运动到gh线处所用的时间t;
(3)线框由静止开始到运动到gh线的整个过程中产生的焦耳热
如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行轨道足够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2。
如图所示,在坐标系xOy中,y轴右侧有一匀强电场;在第二、三象限内有一有界匀强磁场,其上、下边界无限远,右边界为y轴、左边界为平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。一带正电,电量为q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=45°,大小为v.粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求:
(1)粒子经过A点时速度的方向和A点到x轴的距离;
(2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次到达磁场所用的时间。
图18甲所示,平行金属板PQ、MN水平地固定在地面上方的空间,金属板长 l=20cm,两板间距d=10cm,两板间的电压UMP=100V。在距金属板M端左下方某位置有一粒子源A,从粒子源竖直向上连续发射速度相同的带电粒子,射出的带电粒子在空间通过一垂直于纸面向里的磁感应强度B=0.20T的圆形区域匀强磁场(图中未画出)后,恰好从金属板 PQ左端的下边缘水平进入两金属板间,带电粒子在电场力作用下恰好从金属板MN的右边缘飞出。已知带电粒子的比荷=2.0×106C/kg,粒子重力不计,计算结果保留两位有效数字。
求:(1)带电粒子射入电场时的速度大小;(2)圆形匀强磁场区域的最小半径;
(3)若两金属板间改加如图乙所示的电压,在哪些时刻进入两金属板间的带电粒子不碰到极板而能够飞出两板间。
(18分) 如图所示,区域Ⅰ中有竖直向上的匀强电场,电场强度为E; 区域Ⅱ内有垂直纸面向外的水平匀强磁场,磁感应强度为B;区域Ⅲ中有垂直纸面向里的水平匀强磁场,磁感应强度为2B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强磁场中。
求:(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径;
(2)O、M间的距离;
(3)粒子从第一次进入区域Ⅲ到离开区域Ⅲ所经历的时间t3。
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
试题篮
()