如图所示,两根等高光滑的圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开始下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好,求:
(1)棒到达最低点时的速度大小和通过电阻R的电流.
(2)棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.
(3)若棒在拉力作用下,从cd开始以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?
如图所示,在以原点O为圆心、半径为R的半圆形区域内充满了磁感应强度为B的匀强磁场,x轴下方为一平行板电容器,其正极板与x轴重合且在O处开有小孔,两极板间距离为。现有电荷量为e、质量为m的电子在O点正下方负极板上的P点由静止释放。不计电子所受重力。
(1)若电子在磁场中运动一段时间后刚好从磁场的最右边缘处返回到x轴上,求加在电容器两极板间的电压。
(2)将两极板间的电压增大到原来的4倍,先在P处释放第一个电子,在这个电子刚到达O点时释放第二个电子,求
①第一个电子在电场中和磁场中运动的时间之比
②第一个电子离开磁场时,第二个电子的位置坐标。
如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d的平行板电容器与总阻值为的滑动变阻器通过平行导轨连接,电阻为的导体棒MN可在外力的作用下沿导轨从左向右做匀速直线运动。当滑动变阻器的滑动触头位于a、b的中间位置、导体棒MN的速度为时,位于电容器中P点的带电油滴恰好处于静止状态.若不计摩擦和平行导轨及导线的电阻,重力加速度为g,则下列判断正确的是( )
A.油滴带正电荷 |
B.若将上极板竖直向上移动距离d,油滴将向上加速运动,加速度 |
C.若将导体棒的速度变为,油滴将向上加速运动,加速度a=2g |
D.若保持导体棒的速度为不变,而将滑动触头置于a位置,同时将电容器上极板向上移动距离d/3,油滴仍将静止 |
(18分)有一个1000匝的矩形线圈,两端通过导线与平行金属板AB相连(如图所示),线圈中有垂直纸面向外的匀强磁场;已知AB板长为,板间距离为。当穿过线圈的磁通量增大且变化率为时,有一比荷为的带正电粒子以初速度从上板的边缘射入板间,并恰好从下板的边缘射出;之后沿直线MN运动,又从N点射入另一垂直纸面向外磁感应强度为的圆形匀强磁场区(图中未画出),离开圆形磁场时速度方向偏转了。不计带电粒子的重力。试求
(1)AB板间的电压
(2)的大小
(3)圆形磁场区域的最小半径
一个“”形导轨PONQ,其质量为M="2.0" kg,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m="0.60" kg的金属棒CD跨放在导轨上,CD与导轨的动摩擦因数是0.20,CD棒与ON边平行,左边靠着光滑的固定立柱a、b,匀强磁场以ab为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80 T,如图所示。已知导轨ON段长为0.50 m,电阻是0.40 Ω,金属棒CD的电阻是0.20 Ω,其余电阻不计.导轨在水平拉力作用下由静止开始以0.20 m/s2的加速度做匀加速直线运动,一直到CD中的电流达到4.0 A时,导轨改做匀速直线运动.设导轨足够长,取g=10 m/s2。求:
⑴导轨运动起来后,C、D两点哪点电势较高?
⑵导轨做匀速运动时,水平拉力F的大小是多少?
⑶导轨做匀加速运动的过程中,水平拉力F的最小值是多少?
⑷CD上消耗的电功率为P="0.80" W时,水平拉力F做功的功率是多大?
如图所示,一个质量为m =2.0×10-11kg,电荷量为q=1.0×10-5C的带正电粒子P(重力忽略不计),从静止开始经U1=100V电压加速后,水平进入两平行金属板间的偏转电场,偏转电场的电压为U2。金属板长L=20cm,两板间距d =20cm,上极板带正电,下极板带负电。粒子经过偏转电场后进入右侧垂直纸面向里的水平匀强磁场中,位于磁场左侧的理想边界紧邻偏转电场,磁场中其余区域没有边界。磁场磁感应强度为B。求:
(1)微粒进入偏转电场时的速度大小?
(2)若粒子一定会由偏转电场进入磁场中,偏转电压U2满足什么条件?
(3)在(2)前提下若粒子离开磁场后不会第二次进入偏转电场,则磁感应强度B应满足什么条件?
abcd是质量为m,长和宽分别为b和l的矩形金属线框,有静止沿两条平行光滑的倾斜轨道下滑,轨道平面与水平面成θ角。efmn为一矩形磁场区域,磁感应强度为B,方向竖直向上。已知da=an=ne=b,线框的cd边刚要离开磁区时的瞬时速度为v,整个线框的电阻为R,试用题中给出的物理量(m、b、l、B、θ、v、R)表述下列物理量。
(1)ab刚进入磁区时产生的感应电动势;
(2)此时线框的加速度;
(3)线框下滑中共产生的热量。
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中。质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上。初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0。整个运动过程中导体棒始终与导轨垂直并保持良好接触。已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行。
(1)求初始时刻通过电阻R的电流I的大小和方向;
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a;
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q。
如图所示,光滑绝缘的细圆管弯成半径为R的半圆形,固定在竖直平面内,管口B、C的连线是水平直径.现有一带正电的小球(可视为质点)从B点正上方的A点自由下落,A、B两点间距离为4R.从小球进入管口开始,整个空间中突然加上一个匀强电场,电场力在竖直向上的分力大小与重力大小相等,结果小球从管口C处脱离圆管后,其运动轨迹经过A点.设小球运动过程中带电量没有改变,重力加速度为g,求:
(1)小球到达B点的速度大小;
(2)小球受到的电场力的大小;
(3)小球经过管口C处时对圆管壁的压力.
如图所示,一个长为L的绝缘板固定在水平面上.整个空间有一个水平的匀强电场.板的右半部分有一个垂直于纸面向外的匀强磁场.一质量为m,带电量为q的小物体(视为质点),在电场力的作用下,从板的左端P处由静止开始向右运动。小物体与绝缘板间的动摩擦因数为μ。进入磁场区域后小物体恰好做匀速运动.在小物体碰到绝缘板右端的挡板Q后被弹回.若在碰撞瞬间撤去电场,物体返回过程在磁场中仍能做匀速运动,离开磁场后则做匀减速运动,并停在C点,已知PC=L/4。
求:⑴ 小物体与挡板碰撞前后的速率v1和v2;
⑵ 磁感应强度B的大小;
⑶ 电场强度E的大小和方向。
如图所示,两根足够长、相距为L的金属直角导轨,它们各有一边在同一水平面内,另一边垂直于水平面。一绝缘细线跨过导轨直角顶点处定滑轮连接两金属细杆ab、cd,杆通过两端金属小圆环垂直套在导轨上,细杆质量均为m、电阻均为R,整个装置处于磁感强度大小为B,方向竖直向上的匀强磁场中。保持细线拉直后同时无初速释放两细杆,cd杆下降高度h时达到最大速度。 ab杆一直在水平导轨上运动,接触处摩擦及导轨电阻均不计,取重力加速度为g。求:
(1)刚释放时,ab杆的加速度大小;
(2)下滑过程中,cd杆的最大速率;
(3)从开始释放到刚好达到最大速度的过程中整个回路所产生的热量。
如图所示,一个质量m=2.0×10-11kg、电荷量q=1.0×10-5C的带电粒子(重力忽略不计),从静止开始经U1=100V电场加速后,沿两平行金属板间中线水平进入电压U2=100V的偏转电场,带电粒子从偏转电场射出后,进入垂直纸面向里的匀强磁场,磁场的左右边界均与偏转电场的金属板垂直。已知偏转电场金属板长L=20cm、两板间距,匀强磁场的宽度D=10cm。求:
(1)带电粒子进入偏转电场时的速度v0;
(2)带电粒子射出偏转电场时速度v的大小和方向;
(3)为了使带电粒子不从磁场右边界射出,匀强磁场磁感应强度的最小值B。
如图所示,在xOy坐标系第二象限内有一圆形匀强磁场区域,半径为,圆心O′坐标为(- , ),磁场方向垂直xOy平面。在x轴上有坐标(- ,0)的P点,两个电子a、b以相同的速率v沿不同方向从P点同时射入磁场,电子的入射方向为y轴正方向,b的入射方向与y轴正方向夹角为。电子a经过磁场偏转后从y轴上的 Q(0, )点进入第一象限,在第一象限内紧邻y轴有沿y轴正方向的匀强电场,场强大小为,匀强电场宽为。已知电子质量为、电荷量为,不计重力及电子间的相互作用。求:
(1)磁场的磁感应强度B的大小
(2)b电子在磁场中运动的时间
(3)a、b两个电子经过电场后到达x轴的坐标差Δx
如图所示,一个质量为m、带正电荷的物块在水平电场E=kt(t为时间,k为大于零的常数)的作用下被压在绝缘的竖直墙面上.若电场空间和墙面均足够大,从t=0时刻开始,物块所受的摩擦力的大小Ff随时间t变化的关系图是( )
如图甲所示,一正方形金属线框位于有界匀强磁场区域内,线框的右边紧贴着边界.t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动,经过时间t0穿出磁场.图乙所示为外力F随时间t变化的图象.若线框质量为m、电阻R及图象中的F0、t0均为已知量,则根据上述条件,请你推出:
(1)磁感应强度B的表达式;
(2)线框左边刚离开磁场前瞬间的感应电动势E的表达式.
试题篮
()