如图所示,质量为m=0.2kg的小球固定在长为L=0.9m的轻杆的一端,杆可绕O点的水平转轴在竖直平面内转动。(g=10 m/s2)求:
(1)当小球在最高点的速度为多大时,球对杆的作用力为零?
(2)当小球在最高点的速度分别为6 m/s 和1.5 m/s 时,球对杆的作用力的大小与方向?
【改编】如图所示,位于竖直平面上半径为R=0.2m的1/4圆弧轨道AB光滑无摩擦,O点为圆心。质量为m=1kg的小球从A点由静止释放,到达B点时,小球对轨道的压力为30N,从B点飞出,最后落在地面C处。若BC所连直线与水平方向夹角为θ,且tanθ=1,取g ="10" m/s2,不计空气阻力,求:
(1)小球通过B点时的速度;
(2)B点与水平地面的高度差H;
(3)小球落地时的速度大小。
如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R=0.5 m,离水平地面的高度H=0.8 m,物块平抛落地过程水平位移的大小s=0.4 m.设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2.求:
(1)物块做平抛运动的初速度大小v0;
(2)物块与转台间的动摩擦因数μ.
(9分) 如图所示,水平轨道AB与竖直半圆形光滑轨道在B点平滑连接,半圆形轨道半径R=2.5m,质量m=0.1kg的小滑块(可视为质点)以一定的速度从水平轨道进入半圆形轨道,沿轨道运动恰好能到最高点C,且从C点水平飞出后恰好落在A点,重力加速度g=10m/s2,试分析求解:
(1)滑块通过C点时的速度大小;
(2)AB间的距离x。
如图甲所示,BCD为竖直放置的半径R=0.20m的半圆形轨道,在半圆形轨道的最低位置B和最高位置D均安装了压力传感器,可测定小物块通过这两处时对轨道的压力FB和FD。半圆形轨道在B位置与水平直轨道AB平滑连接,在D位置与另一水平直轨道EF相对,其间留有可让小物块通过的缝隙。一质量m=0.20kg的小物块P(可视为质点),以不同的初速度从M点沿水平直轨道AB滑行一段距离,进入半圆形轨道BCD经过D位置后平滑进入水平直轨道EF。一质量为2m的小物块Q(可视为质点)被锁定在水平直轨道EF上,其右侧固定一个劲度系数为k=500N/m的轻弹簧。如果对小物块Q施加的水平力F≥30N,则它会瞬间解除锁定沿水平直轨道EF滑行,且在解除锁定的过程中无能量损失。已知弹簧的弹性势能公式,其中k为弹簧的劲度系数,x为弹簧的形变量。g取10m/s2。
(1)通过传感器测得的FB和FD的关系图线如图乙所示。若轨道各处均不光滑,且已知轨道与小物块P之间的动摩擦因数μ=0.10,MB之间的距离xMB=0.50m。当 FB=18N时,求:
①小物块P通过B位置时的速度vB的大小;
②小物块P从M点运动到轨道最高位置D的过程中损失的总机械能;
(2)若轨道各处均光滑,在某次实验中,测得P经过B位置时的速度大小为m/s。求在弹簧被压缩的过程中,弹簧的最大弹性势能。
如图所示,粗糙水平面与半径R=1.5m的光滑圆弧轨道相切于B点,质量m=1kg的物体在大小为10N、方向与水平面成37°角的拉力F作用下从A点由静止开始沿水平面运动,到达B点时立刻撤去F,物体沿光滑圆弧向上冲并越过C点,然后返回经过B处的速度vB=15m/s。已知sAB=15m,g=10m/s2,sin37°=0.6,cos37°=0.8。求:
(1)物体到达C点时对轨道的压力和物体越过C点后上升的最大高度h;
(2)物体与水平面的动摩擦因数μ。
如图所示,光滑的圆弧轨道与倾角为θ=37°的斜面相切于B点,圆弧轨道的半径为R=1m,质量为M=2kg的物块甲在斜面上A点由静止释放,物块甲与斜面的动摩擦因数为μ=0.25,AB间距离为s=4m,当甲运动到C点时,恰好与迎面过来的质量m=0.5kg的乙相碰,碰后两者粘在一起,向左运动,恰好能到达圆弧轨道的最高点D点,(已知sin37°=0.6,cos37°=0.8,g取10m/s2)求:
(1)物块甲与物块乙相碰前的速度v1;
(2)物块甲和乙碰撞后的一瞬间,它们对圆弧轨道最低点C的压力之和;
(3)两物块从D点抛出后,落到斜面上所用的时间.
如图所示,倾斜轨道AB的倾角为370,CD、EF轨道水平,AB与CD通过光滑圆弧管道BC连接,CD右端与竖直光滑圆周轨道相连。小球可以从D进入该轨道,沿轨道内侧运动,从E滑出该轨道进入EF水平轨道。小球由静止从A点释放,已知AB长为5R,CD长为R,重力加速度为g,小球与斜轨AB及水平轨道CD、EF的动摩擦因数均为0.5,sin370=0.6,cos370=0.8,圆弧管道BC入口B与出口C的高度差为l.8R。求:(在运算中,根号中的数值无需算出)
(1)小球滑到斜面底端C时速度的大小。
(2)小球刚到C时对轨道的作用力。
(3)要使小球在运动过程中不脱离轨道,竖直圆周轨道的半径应该满足什么条件?
(15分) 如图所示,水平轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m,质量m=0.1kg的小滑块(可视为质点)以一定的速度从水平轨道进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。若小滑块从C点水平飞出后恰好落在A点,重力加速度g=10m/s2,试分析求解:
(1)滑块通过C点时的速度大小;
(2)滑块刚进入半圆形轨道时,在B点对轨道的压力大小;
如图所示,一根长为L的绝缘轻绳的一端固定在O点,另一端连接着一个带正电的小球,小球可视为质点,其质量为m,电荷量为q。在O点正上方和正下方距O点L处,各固定一个绝缘弹性挡板A和B,两个挡板尺寸很小,均竖直放置。此装置处在一个竖直匀强电场中,电场强度的大小为,方向最初竖直向上。现将小球拉到O点右侧同一高度且距O点L处,给它一个竖直向上的初速度
。此后小球在A、B之间的右侧区域竖直面内做圆周运动,并不时与A、B挡板碰撞,在小球与A、B挡板碰撞时,通过两挡板上安装的传感器和控制电路,控制电场方向在碰后瞬间反向,不计碰撞中的能量损失,重力加速度为g,求:
(1)小球与A挡板第一次碰前瞬间,绳中拉力F1为多少?
(2)小球与B挡板第一次碰前瞬间,绳中的拉力F2为多少?
(3)若轻绳可以承受的最大拉力为50mg,则在绳断之前,小球与B挡板碰撞了多少次?
如图所示,半径R=0.5m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,斜面倾角分别如图所示。O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度.斜面体ABC固定在地面上,顶端B安装一定滑轮, 一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q (两边细绳分别与对应斜面平行),并保持P、Q两物块静止.若PC间距为L1=0.25m,斜面MN足够长,物块P质量m1= 3kg,与MN间的动摩擦因数,重力加速度g=10m/s2求:( sin37°=0.6,cos37°=0.8)
(1)小物块Q的质量m2;
(2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;
(3)物块P在MN斜面上滑行的总路程.
为了研究过山车的原理,物理小组提出了下列的设想:取一个与水平方向夹角为37°、长为L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个质量为2kg的小物块以初速度v0=4.0m/s,从某一高处水平抛出,恰从A点无碰撞地沿倾斜轨道滑下。已知物块与倾斜轨道AB的动摩擦因数μ=0.5(g取10m/s2,sin37°=0.6,cos37°=0.8):
(1)求小物块的抛出点和A点的高度差;
(2)求小物块沿着轨道AB运动的过程中克服摩擦力所做的功;
(3)为了让小物块能沿着轨道运动,并从E点飞出,则竖直圆轨道的半径应该满足什么条件?
如图所示是某次四驱车比赛的轨道某一段.张华控制的四驱车(可视为质点),质量 m=1.0kg,额定功率为P=7W.张华的四驱车到达水平平台上A点时速度很小(可视为0),此时启动四驱车的发动机并直接使发动机的功率达到额定功率,一段时间后关闭发动机.当四驱车由平台边缘B点飞出后,恰能沿竖直光滑圆弧轨道CDE上C点的切线方向飞入圆形轨道,且此时的速度大小为5m/s,∠COD=53°,并从轨道边缘E点竖直向上飞出,离开E以后上升的最大高度为h=0.85m.已知AB间的距离L=6m,四驱车在AB段运动时的阻力恒为1N.重力加速度g取10m/s2,不计空气阻力.sin53°=0.8,cos53°=0.6,求:
(1)四驱车运动到B点时的速度大小;
(2)发动机在水平平台上工作的时间;
(3)四驱车对圆弧轨道的最大压力.
如图所示,在水平转台的光滑水平横杆上穿有两个质量分别为2m和m的小球A和B,A、B间用劲度系数为k的轻质弹簧连接,弹簧的自然长度为L,当转台以角速度ω绕竖直轴匀速转动时,如果A、B仍能相对横杆静止而不碰左右两壁,求:
(1)A、B两球分别离开中心转轴的距离.
(2)若转台的半径也为L,求角速度ω的取值范围.
试题篮
()