如图所示,一固定斜面体,其斜边与水平底边的夹角,BC为一段光滑圆弧轨道,DE为半圆形光滑轨道,两圆弧轨道均固定于竖直平面内,一滑板静止在光滑的地面上,右端紧靠C点,上表面所在平面与两圆弧分别相切于C、D两点。一物块被轻放在斜面上F点由静止释放,物块离开斜面后恰好在B点沿切线进入BC段圆弧轨道,再经C点滑上滑板,滑板运动到D点时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,DE半圆弧轨道和BC圆弧轨道的半径均为R,斜面体水平底边与滑板上表面的高度差,板长l=6.5R,板左端到D点的距离L在范围内取值,F点距A点的距离s=12.5R,物块与斜面、物块与滑板间的动摩擦因数均为,重力加速度取g。已知sin37°=0.6,cos37°=0.8。求:(结果用字母m、g、R、L表示)
(1)求物块滑到A点的速度大小;
(2)求物块滑到C点时所受圆弧轨道的支持力的大小;
(3)试讨论物块从滑上滑板到离开左端的过程中,克服摩擦力做的功Wf与L的关系;并判断物块能否滑到DE轨道的中点。
如图所示,在竖直向下的匀强电场中,一个质量为m带负电的小球从斜轨道上的A点由静止滑下,小球通过半径为R的圆轨道顶端的B点时恰好不落下来。已知轨道光滑又绝缘,且小球所受的重力是它所受电场力的2倍,求:
(1)A点在斜轨道上的高度h为多少?
(2)小球运动到最低点时对轨道的压力为多少?
过山车是游乐场中常见的设施。下图是一种过山车运行轨道的简易模型,它由竖直平面内粗糙斜面轨道和光滑圆形轨道组成。过山车与斜面轨道间的动摩擦因数为,圆形轨道半径为R,A点是圆形轨道与斜面轨道的切点。过山车(可视为质点)从倾角为的斜面轨道某一点由静止开始释放并顺利通过圆形轨道。若整个过程中,人能承受过山车对他的作用力不超过其自身重力的8倍。求过山车释放点距A点的距离范围。
粗糙水平轨道AB与竖直平面内的光滑圆弧轨道BC相切于B点,一物块(可看成为质点)在水平向右的恒力F作用下自水平轨道的P点处由静止开始匀加速运动到B,此时撤去该力,物块滑上圆弧轨道,在圆弧轨道上运动一段时间后,回到水平轨道,恰好返回到P点停止运动,已知物块在圆弧轨道上运动时对轨道的压力最大值为F1=2.02N,最小值为F2=1.99N,当地重力加速度为g=10m/s2.
(1)求物块的质量m的大小;
(2)若已知圆弧轨道的半径为R=8m,P点到B点的距离是x=0.5m,求F的大小.
下图是用传送带传送行李的示意图。图中水平传送带AB间的长度为8m,它的右侧是一竖直的半径为0.8m的1/4圆形光滑轨道,轨道底端与传送带在B点相切。若传送带向右以6m/s的恒定速度匀速运动,当在传送带的左侧A点轻轻放上一个质量为4kg的行李箱时,箱子运动到传送带的最右侧如果没被捡起,能滑上圆形轨道,而后做往复运动直到被捡起为止。已知箱子与传送带间的动摩擦因数为0.1,重力加速度大小为g=10m/s2,求:
⑴箱子从A点到B点所用的时间及箱子滑到圆形轨道底端时对轨道的压力大小;
⑵若行李箱放上A点时给它一个5m/s的水平向右的初速度,到达B点时如果没被捡
起,则箱子离开圆形轨道最高点后还能上升多大高度?在给定的坐标系中定性画出箱子从A点到最高点过程中速率v随时间t变化的图象。
如图所示,在xOy平面内存在均匀、大小随时间周期性变化的磁场和电场,变化规律分别如图乙、丙所示(规定垂直纸面向里为磁感应强度的正方向、+y轴方向为电场强度的正方向)。在t=0时刻由原点O发射初速度大小为v0,方向沿+y轴方向的带负电粒子(不计重力)。其中已知v0、t0、B0、E0,且,粒子的比荷,x轴上有一点A,坐标为(,0)。
(1)求时带电粒子的位置坐标。
(2)粒子运动过程中偏离x轴的最大距离。
(3)粒子经多长时间经过A点。
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
如图甲所示,倾斜光滑直轨道AB和一直径d=0.4m的光滑圆轨道BCD平滑连接,AB和BCD相切于B点,CD连线是圆轨道竖直方向的直径(C、D两点分别为圆轨道的最低点和最高点),且∠BOC=θ=37°。一质量m=0.1kg的小滑块(可视为质点)从轨道AB上高H处的某点由静止滑下。已知sin37°=0.6,cos37°=0.8。
(1)若小滑块刚好能通过圆轨道最高点D点,求此时的高度H;
(2)若用力传感器测出滑块经过圆轨道最高点D时对轨道的压力为F,请在如图乙中绘制出压力F与高度H的关系图象;
(3)通过计算判断是否存在某个H值,使得滑块经过最高点D后能直接落到直轨道AB上与圆心等高的点。
如图所示,轮半径r=10 cm的传送带,水平部分AB的长度L=1.5 m,与一圆心在O点、半径R=1 m的竖直光滑圆轨道的末端相切于A点,AB高出水平地面H=1.25 m,一质量m=0.1 kg的小滑块(可视为质点),由圆轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2,滑块与传送带间的动摩擦因数μ=0.1,不计空气阻力.
(1)求滑块对圆轨道末端的压力;
(2)若传送带一直保持静止,求滑块的落地点与B间的水平距离;
(3)若传送带以v0=0.5 m/s的速度沿逆时针方向运行(传送带上部分由B到A运动),求滑块在传送带上滑行过程中产生的内能.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
如图所示,倾角为θ=45°的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内.一质量为m的小滑块从导轨上离地面高为h=3R的D处无初速下滑并进入圆环轨道.接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力.求:
(1)滑块运动到圆环最高点C时的速度的大小;
(2)滑块运动到圆环最低点时对圆环轨道压力的大小;
(3)滑块在斜面轨道BD间运动的过程中克服摩擦力做的功。
如图,质量为
的小车静止在光滑的水平面上,小车AB段是半径为
的四分之一圆弧光滑轨道,
段是长为
的水平粗糙轨道,两段轨道相切于
点,一质量为
的滑块在小车上从
点静止开始沿轨道滑下,重力加速度为
。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从
点由静止下滑,然后滑入
轨道,最后从
点滑出小车,已知滑块质量 ,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道
间的动摩擦因数为
,求:
① 滑块运动过程中,小车的最大速度
;
② 滑块从
运动过程中,小车的位移大小
。
试题篮
()