如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d的平行板电容器与总阻值为2R0的滑动变阻器通过平行导轨连接,电阻为R0的导体棒MN可在外力的作用下沿导轨从左向右做匀速直线运动。当滑动变阻器的滑动触头位于a、b的中间位置且导体棒MN的速度为v0时,位于电容器中P点的带电油滴恰好处于静止状态。若不计摩擦和平行导轨及导线的电阻,各接触处接触良好,重力加速度为g,则下列判断正确的是
A.油滴带正电荷 |
B.若将上极板竖直向上移动距离d,油滴将向上加速运动,加速度a = g/2 |
C.若将导体棒的速度变为2v0,油滴将向上加速运动,加速度a = g |
D.若保持导体棒的速度为v0不变,而将滑动触头置于a端,同时将电容器上极板向上移动距离d/3,油滴仍将静止 |
如图所示,两块竖直放置的平行金属板A、B,两板相距d,两板间电压为U,一质量为m的带电小球从两板间的M点开始以竖直向上的初速度v0运动,当它到达电场中的N点时速度变为水平方向、大小变为2v0,求M、N两点间的电势差和电场力对带电小球所做的功.(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g)
如图(a)所示,水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB板的正中间,距金属板右端x=0.5m处竖直放置一足够大的荧光屏,现在AB板间加如图(b)所示的方波形电压,已知U0=1.0×102V,在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s,带电粒子的重力不计,则:
(1)求电子在电场中的运动时间;
(2)求在t=0时刻进入的粒子飞出电场时的侧移量;
(3)求各个时刻进入的粒子,离开电场时的速度的大小和方向;
(4)若撤去挡板,求荧光屏上出现的光带长度。
如图所示的电路中,两平行金属板A、B水平放置,两板间的距离d=40cm。电源电动势E=24V,内电阻r=1Ω,电阻R=15Ω。闭合开关S,待电路稳定后,将一带正电的小球从B板小孔以初速度υ0=4m/s竖直向上射入板间。若小球带电量为q=1×10-2C,质量为m=2×10-2kg,不考虑空气阻力。那么,滑动变阻器接入电路的阻值为多大时,小球恰能到达A板?此时,电源的输出功率是多大?(取g=10m/s2)
如图所示,竖直放置的两平行带电金属板间的匀强电场中有一根质量为m的均匀绝缘杆,上端可绕轴O在竖直平面内转动,下端固定一个不计重力的点电荷A,带电量+q。当板间电压为U1时,杆静止在与竖直方向成=45°的位置;若平行板以M、N为轴同时顺时针旋转=15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。
某同学是这样分析求解的:
两种情况中,都有力矩平衡的关系。设杆长为L,两板间距为d,当平行板旋转后,电场力就由变为,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
你觉得他的分析是否正确?如果认为是正确的,请继续解答;如果认为有错误之处,请说明理由并进行解答。
在如图所示的装置中,电源电动势为E,内阻不计,定值电阻为R1,滑动变阻器总阻值为R2,置于真空中的平行板电容器水平放置,极板间距为d.处在电容器中的油滴A恰好静止不动,此时滑动变阻器的滑片P位于中点位置.
求此时电容器两极板间的电压;
求该油滴的电性以及油滴所带电荷量q与质量m的比值;
现将滑动变阻器的滑片P由中点迅速向上滑到某位置,使电容器上的电荷量变化了Q1,油滴运动时间为t;再将滑片从该位置迅速向下滑动到另一位置,使电容器上的电荷量又变化了Q2,当油滴又运动了2t的时间,恰好回到原来的静止位置.设油滴在运动过程中未与极板接触,滑动变阻器滑动所用的时间与电容器充电、放电所用时间均忽略不计.求:Q1与Q2的比值.
如图所示,竖直放置的两平行带电金属板间的匀强电场中有一根质量为m的均匀绝缘杆,上端可绕轴O在竖直平面内转动,下端固定一个不计重力的点电荷A,带电量+q。当板间电压为U1时,杆静止在与竖直方向成=45°的位置;若平行板以M、N为轴同时顺时针旋转=15°的角,而仍要杆静止在原位置上,则板间电压应变为U2。求:U1/U2的比值。
某同学是这样分析求解的:
两种情况中,都有力矩平衡的关系。设杆长为L,两板间距为d,当平行板旋转后,电场力就由变为,电场力对轴O的力臂也发生相应的改变,但电场力对轴O的力矩没有改变。只要列出两种情况下的力矩平衡方程,就可求解了。
你觉得他的分析是否正确?如果认为是正确的,请继续解答;如果认为有错误之处,请说明理由并进行解答。
相距很近的平行板电容器AB,A.B两板中心各开有一个小孔,如图甲所示,靠近A板的小孔处有一电子枪,能够持续均匀地发射出电子,电子的初速度为,质量为m,电量为e,在AB两板之间加上图乙所示的交变电压,其中0<k<1,;紧靠B板的偏转电场的电压也等于,板长为L,两板间距为d,偏转电场的中轴线(虚线)过A.B两板中心,距偏转极板右端L/2处垂直中轴线放置很大的荧光屏PQ,不计电子的重力和它们之间的相互作用,电子在电容器AB中的运动时间忽略不计
(1)在0-T时间内,荧光屏上有两个位置法官,试求这两个发光点之间的距离(结果采用L、d表示,第2小题亦然)
(2)以偏转电场的中轴线为对称轴,只调整偏转电场极板的间距,要使荧光屏上只出现一个光点,极板间距应满足什么要求?
(3)撤去偏转电场及荧光屏,当k取恰当的数值时,使在0-T时间内通过电容器B板的所有电子能在某一时刻形成均匀分布的一段电子束,球k的值
如图所示,在平行金属板AB间和BC间分别由电源提供恒定的电压U1和U2,且U2>U1。在A板附近有一电子,质量为m,电荷量为-e,由静止开始向右运动,穿过B板的小孔进人BC之间,若AB间距为d1,BC间距为d2。求:
(1)电子通过B板小孔后向右运动距B板的最大距离;
(2)电子在AC间往返运动的周期。
如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m,两板间距离 d =" 0.4" cm,有一束相同微粒组成的带正电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,微粒所带电荷立即转移到下极板且均匀分布在下极板上。设前一微粒落到下极板上时后一微粒才能开始射入两极板间。已知微粒质量为 m = 2×10-6kg,电量q = 1×10-8 C,电容器电容为C =10-6 F。求:(g=10m/s2)
(1)为使第一个粒子能落在下板中点,则微粒入射速度v0应为多少?
(2)以上述速度入射的带电粒子,最多能有多少落到下极板上?
如图,P点的坐标为,Q点的坐标为,平行板电容器AB、CD两带电板平行于x轴,上板带正电,板长为,两板间的距离为,现有一质量为m,电量为+q的带电粒子从P点以初速度大小垂直于y轴射入第一象限,欲使这个粒子从Q点射出,且有最大的偏转角,需将电容器平移至第一象限的适当位置,不计粒子的重力,求
(1)粒子从P点运动到Q点的时间;
(2)电容器平移至第一象限后上板左端A点的坐标位置(忽略板的厚度)
(3)电容器两板的电压U值为多少?
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图所示,A、B为两块平行金属板,A板带正电荷、B板带负电荷 两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔 C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电 两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′ 半圆形金属板两端与B板的间隙可忽略不计 现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电荷量为q的带正电的微粒(微粒的重力不计),问:
(1)微粒穿过B板小孔时的速度多大?
(2)为了使微粒能在C、D板间运动而不碰板,C、D板间的电场强度大小应满足什么条件?
(3)从释放微粒开始,微粒通过半圆形金属板间的最低点P所需时间的表达式。
如图所示,一平行板电容器的两个极板竖直放置,在两板之间有一个带电小球,小球用绝缘细线连接悬挂于O点。现给电容器缓慢充电,使两极板所带电量分别为+Q和-Q,此时悬线与竖直方向的夹角为30º。再给电容器缓慢充电,直到悬线与竖直方向的夹角增加到60º,且小球与两板不接触。求第二次充电使电容器正板增加的电量是多少?
试题篮
()