(22分) 如图所示,在平面直角坐标系O点处有一粒子源,该粒子源可向x ³ 0的范围内发射比荷C/kg的带正电粒子,粒子速度范围为(c为真空中的光速),在0£x< 1m的I区域存在垂直于坐标平面向外、磁感强度B1=1T的匀强磁场,在1m£x£3 m的II区域存在垂直坐标平面向里、磁感强度B2 = 0.5T的匀强磁场,不计粒子重力。
(1) 速度多大的粒子不可能进入II区域? 并指出这些粒子在y轴上射出的范围。
(2) 对能从(1m,0)点进入II区域的粒子,它在O点发射速度的方向(用与x轴正向夹角q表示)与其大小满足的什么关系? 在O点发射的什么方向范围内的粒子才有可能经过(1m,0)点?
(3) 对在O点与+y方向成45°角入射的粒子,在答题卡的图上用圆规和直尺作出它们在x=3m边界上射出的范围,并在各射出点标出速度矢量(要求你画的图能表明各速度的矢量长短关系及方向关系)。
(图中要留下清晰的作图痕迹,使阅卷者能看得清你的作图过程,不要求写出作图依据和作图过程)
如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点.不计重力,求:
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.
如图所示,真空中有一半径r=0.5 m的圆形磁场区域,圆与x轴相切于坐标原点O,磁场的磁感应强度大小B=2×10-3 T,方向水平向里,在x1=0.5 m到x2=1.0 m区域内有一个方向竖直向下的匀强电场,电场强度E=2.0×103 N/C.在x=2.0 m处有竖直放置的一足够大的荧光屏.现将比荷为=1×109 C/kg的带负电粒子从O点处射入磁场,不计粒子所受重力.(sin37°=0.6,cos37°=0.8)
(1)若粒子沿y轴正方向射入,恰能从磁场与电场的相切处进入电场,求粒子最后到达荧光屏上位置的y的坐标.
(2)若粒子以(1)问中相同速率从O点与y轴成37°角射入第二象限,求粒子到达荧光屏上位置的y坐标.
(10分)汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子经加速电压加速后,穿过A’中心的小孔沿中心线(O1O的方向进入到两块水平正对放置的平行极板P和P’间的区域,极板间距为d。当P和P’极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;当P和P’极板间加上偏转电压U后,亮点偏离到O’点;此时,在P和P’间的区域,再加上一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点。不计电子的初速度、所受重力和电子间的相互作用。
(1)求电子经加速电场加速后的速度大小;
(2)若不知道加速电压值,但己知P和P’极板水平方向的长度为L1,它们的右端到荧光屏中心O点的水平距离为L2,(O于O’点的竖直距离为h,(O'与0点水平距离可忽略不计),求电子的比荷。
如图所示,在同一平面内边长均为l的正方形区域abcd和cdef中.分别存在平行于ab方向的匀强电场和垂直纸面向里的匀强磁场.质量为m电荷量为q的带电粒子,以速度υ0沿ad方向从a点射入电场,并从dc边的中点O射出,不计重力.
(1)求电场强度的大小;
(2)若粒子垂直于ef边界射出磁场,求它在电、磁场中运动的总时间;
(3)磁场的磁感应强度大小在什么范围内时,粒子才能从de边界射出磁场?
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为L的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m、电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔S1处进入电容器,穿过小孔S2后从距三角形A点(﹣1)L的P处垂直AB方向进入磁场,
(1)求粒子到达小孔S2时的速度;
(2)若已知粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若磁场的磁感应强度的大小可以任意取值,设能从AC边射出的粒子离开磁场时的位置到A点的距离为x,求x的取值范围.
如图,长为L的一对平行金属板平行正对放置,间距,板间加上一定的电压.现从左端沿中心轴线方向入射一个质量为m、带电量为+q的带电微粒,射入时的初速度大小为v0.一段时间后微粒恰好从下板边缘P1射出电场,并同时进入正三角形区域.已知正三角形区域内存在垂直纸面向里的匀强磁场B1,三角形的上顶点A与上金属板平齐,底边BC与金属板平行.三角形区域的右侧也存在垂直纸面向里、范围足够大的匀强磁场B2,且B2=4B1.不计微粒的重力,忽略极板区域外部的电场.
(1)求板间的电压U和微粒从电场中射出时的速度大小和方向.
(2)微粒进入三角形区域后恰好从AC边垂直边界射出,求磁感应强度B1的大小.
(3)若微粒最后射出磁场区域时与射出的边界成30°的夹角,求三角形的边长.
如图甲所示,、为水平放置的间距的两块足够大的平行金属板,两板间有场强为、方向由指向的匀强电场.一喷枪从、板的中央点向水平线各个方向均匀地喷出初速度大小均为的带电微粒.已知微粒的质量均为、电荷量均为,不计微粒间的相互作用、对板间电场和磁场的影响及空气阻力,取.求:
(1)微粒落在金属板上所围成的图形面积.
(2)要使微粒不落在金属板上,通过计算说明如何调节两板间的场强.
(3)在满足(2)的情况下,在两板间加垂直于纸面向里的匀强磁场,磁感应强度,调节喷枪使微粒可以向纸面内沿各个方向喷出(如图乙),求板被微粒打中的区域长度和微粒在磁场中运动的最短时间.
如图,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;、,离子重力不计。
(1)求加速电场的电压U;
(2)若离子恰好能打在Q点上,求矩形区域QNCD内匀强电场场强E0的值;
(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面向里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围。
如图在第一象限存在匀强磁场,第四象限存在正交电场和磁场,磁感应强度均为B,一个电子从y轴上的c点平行x轴射入磁场,经x轴的P点沿PC直线射出第四象限,已知AC的长度为L;∠CAP=30°;电子质量为m,电量为q。求:
(1)电子射入磁场时的速度v;
(2)电子在第一象限运动时间;
(3)电场强度E的大小和方向;
(4)电子在第四象限运动时间.
(改编)电偏转和磁偏转技术在科学上有着广泛的应用,如图所示的装置中,AB、CD间的区域有沿竖直向上的匀强电场,在CD的右侧有一与CD相切于M点的圆形有界匀强磁场中,磁场方向垂直于纸面向外.一带正电粒子自O点以水平初速度v0正对P点进入该电场后,从M点飞离CD边界时速度为2v0,再经磁场偏转后又由N点垂直于CD边界回到电场区域,并恰好能返回O点.已知OP间距为d,粒子质量为m,电量为q,粒子自身重力忽略不计.试求:
(1)P、M两点间的距离h和M点速度与O点速度夹角θ的正切;
(2)带电粒子返回O点时的速度大小v2;
(3)磁感强度B的大小和圆形有界匀强磁场区域的面积S.
示波器的示波管中电子束是用电偏转技术实现的,电视机的显像管中电子束是用磁偏转技术实现的。图为磁场或电场实现电子束偏转的示意图,M为显示屏。已知灯丝正常工作,由灯丝发射出来的电子初速度可认为零,经加速电压为U1的电场加速,电子束从两极板正中央水平射入。已知电子质量为m、电荷量为q。当加一匀强磁场时能让电子束恰好射到极板的右下边缘,偏转角度最大为53°,已知极板长为4L,电子所受的重力大小忽略不计。(sin53°= 0.8,cos53°= 0.6),求:
(1)电子在该磁场中的偏转半径R和极板间距d分别为多少?
(2)此时所加的磁场的磁感强度B的值?
(3)若撤去磁场,改加竖直方向电场时也让电子束射到极板的右下边缘,则极板间的电压U2为多少?
某高中物理课程基地拟采购一批实验器材,增强学生对电偏转和磁偏转研究的动手能力,其核心结构原理可简化为题图所示.AB、CD间的区域有竖直向上的匀强电场,在CD的右侧有一与CD相切于M点的圆形有界匀强磁场,磁场方向垂直于纸面.一带正电粒子自O点以水平初速度正对P点进入该电场后,从M点飞离CD边界,再经磁场偏转后又从N点垂直于CD边界回到电场区域,并恰能返回O点.已知OP间距离为,粒子质量为,电荷量为,电场强度大小,粒子重力不计.试求:
(1)粒子从M点飞离CD边界时的速度大小;
(2)P、N两点间的距离;
(3)磁感应强度的大小和圆形有界匀强磁场的半径.
(12 分)在平面直角坐标系xoy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度的大小;
(3)粒子从M点运动到P点的总时间t.
离子推进器是太空飞行器常用的动力系统,某种推进器设计的简化原理如图1所示,截面半径为R的圆柱腔分为两个工作区。I为电离区,将氙气电离获得1价正离子,II为加速区,长度为L,两端加有电压,形成轴向的匀强电场。I区产生的正离子以接近0的初速度进入II区,被加速后以速度vM从右侧喷出。I区内有轴向的匀强磁场,磁感应强度大小为B,在离轴线R/2处的C点持续射出一定速度范围的电子。假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看)。电子的初速度方向与中心O点和C点的连线成α角(0<α<90◦)。推进器工作时,向I区注入稀薄的氙气。电子使氙气电离的最小速度为v0,电子在I区内不与器壁相碰且能到达的区域越大,电离效果越好。已知离子质量为M;电子质量为m,电量为e。(电子碰到器壁即被吸收,不考虑电子间的碰撞)。
求II区的加速电压及离子的加速度大小;
为取得好的电离效果,请判断I区中的磁场方向(按图2说明是“垂直纸面向里”或“垂直纸面向外”);
ɑ为90◦时,要取得好的电离效果,求射出的电子速率v的范围;
要取得好的电离效果,求射出的电子最大速率vm与α的关系。
试题篮
()