如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连。质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零。现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,以原速率弹回,刚好能够滑到木板左端而不从木板上落下,求的值。
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知万有引力常量为G,太阳的质量为M太.
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月球到地球中心距离为3.84×108m,月球绕地球运动的周期为2.36×106s,试计算地球的质量M地.(G=6.67×10-11N·m2/kg2,结果保留一位有效数字)
如题图所示,在半径为a的圆柱空间中(图中圆为其横截面)充满磁感应强度大小为B的均匀磁场,其方向平行于轴线远离读者.在圆柱空间中垂直轴线平面内固定放置一绝缘材料制成的边长为L=1.6a的刚性等边三角形框架ΔDEF,其中心O位于圆柱的轴线上.DE边上S点()处有一发射带电粒子的源,发射粒子的方向皆在题图中截面内且垂直于DE边向下。发射粒子的电量皆为q(>0),质量皆为m,但速度v有各种不同的数值。若这些粒子与三角形框架的碰撞无能量损失(不能与圆柱壁相碰),电量也无变化,且每一次碰撞时速度方向均垂直于被碰的边。试问:
(1)带电粒子经多长时间第一次与DE边相碰?
(2)带电粒子速度v的大小取哪些数值时可使S点发出的粒子最终又回到S点?
(3)这些粒子中,回到S点所用的最短时间是多少?
如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A.B两点分别是圆轨道的最低点和最高点,该区域存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动,(电荷量不变)经过C点时速度最大,O、C连线与竖直方向的夹角,CD为直径,重力加速度为g,求
(1)小球所受到的电场力的大小
(2)小球在A点速度多大时,小球经过D点时对圆轨道的压力最小
如图甲所示,物块A、B的质量分别是 ="4.0" kg和="3.0" kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触。另有一物块C从t=0时以一定速度向右运动,在t="4" s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图像如图乙所示。求:
①物块C的质量;
②B离开墙后的运动过程中弹簧具有的最大弹性势能。
如图所示,已知半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面内,甲轨道左侧又连接一个光滑的轨道,两圆形轨道之间由一条水平轨道CD相连.一小球自某一高度由静止滑下,先滑过甲轨道,通过动摩擦因数为μ的CD段,又滑过乙轨道,最后离开.若小球在两圆轨道的最高点对轨道压力都恰好为零.试求:
⑴释放小球的高度h.
⑵水平CD段的长度.
在抗战胜利70周年阅兵演习中,某直升机在地面上空某高度A位置处于静止状态待命,现接到上级命令,要求直升机10时58分20秒由静止状态沿水平方向做匀加速直线运动,经过AB段加速后,进入BC段的匀速受阅区,11时准时通过C位置,已知,,问:
(1)直升机在BC段的速度大小是多少
(2)直升机在AB段做匀加速直线运动时的加速度大小是多少
如图所示,两块竖直放置的平行金属板A、B,两板相距d,两板间电压为U,一质量为m的带电小球从两板间的M点开始以竖直向上的初速度v0运动,当它到达电场中的N点时速度变为水平方向、大小变为2v0,求M、N两点间的电势差和电场力对带电小球所做的功.(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g)
(12分)在光滑绝缘水平面上,两个正点电荷Q1=Q和Q2=4Q分固定在A、B两点,A、B两点相距L,且A、B两点正好位于水平放置的光滑绝缘半圆细管两个端点的出口处,如图所示.
⑴现将另一正点电荷置于A、B连线上靠近A处静止释放,求它在AB连线上运动过程中达到最大速度时的位置离A点的距离.
⑵若把该点电荷放于绝缘管内靠近A点处由静止释放,已知它在管内运动过程中速度为最大时的位置在P处.试求出图中PA和AB连线的夹角θ.
如图所示,M是水平放置的半径足够大的圆盘,绕过其圆心的竖直轴OO匀速转动,规定经过圆心D点且水平向右为礴由正方向。在D点正上方距盘面高为h=1.25m处有一个可间断滴水的容器,从t=0时刻开始.容器沿水平轨道向X轴正方向做初速度为零的匀加速直线运动。已知t=0时刻滴下第一滴水,以后每当前一滴水刚好落到盘面时再滴下一滴水。则:(取g=l0m/s2)
(1)每一滴水离开容器后经过多长时间滴落到盘面上?
(2)要使每一滴水在盘面上的落点都位于同一直线上,圆盘的角速度应为多大?
(3)当圆盘的角速度为2πrad/s时,第二滴水与第三滴水在盘面上落点间的距离2m,求容器的加速度a为多少?
(15分)如图甲所示,在水平地面上固定一对与水平面倾角为α的光滑平行导电轨道,轨道间的距离为l,两轨道底端的连线与轨道垂直,顶端接有电源.将一根质量为m的直导体棒ab放在两轨道上,且与两轨道垂直.已知轨道和导体棒的电阻及电源的内电阻均不能忽略,通过导体棒的恒定电流大小为I,方向由a到b,图乙为图甲沿a → b方向观察的平面图.若重力加速度为g,在轨道所在空间加一竖直向上的匀强磁场,使导体棒在轨道上保持静止.
⑴ 请在图乙所示的平面图中画出导体棒受力的示意图;
⑵ 求出磁场对导体棒的安培力的大小;
⑶ 如果改变导轨所在空间的磁场方向,试确定使导体棒在轨道上保持静止的匀强磁场磁感应强度B的最小值的大小和方向.
分如图,在xoy平面内第二象限区域内有垂直纸面向内的匀强磁场B,其大小为0.2T,在A(-6cm,0)点有一粒子发射源,向x轴上方180°范围内发射的负粒子,粒子的比荷为,不计粒子重力,求:
(1) 粒子在磁场中做圆周运动的半径.
(2) 粒子在磁场中运动的最长时间是多少(结果用反三角函数表示)?
(3) 若在范围内加一沿y轴负方向的匀强电场,从y轴上离O点最远处飞出的粒子经过电场后恰好沿x轴正向从右边界某点飞出,求出该点坐标(以厘米为单位).
如图所示,充电后的平行板电容器水平放置,电容为C,极板间的距离为d,上板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g).求:
(1)小球到达小孔处的速度;
(2)极板间电场强度的大小和电容器所带电荷量;
(3)小球从开始下落运动到下极板处的时间.
在示波管中,电子通过电子枪加速,进入偏转电场,然后射到荧光屏上,如图所示,设电子的质量为m(不考虑所受重力),电荷量为e,从静止开始,经过加速电场加速,加速电场电压为U1,然后进入偏转电场,偏转电场中两板之间的距离为d,板长为L,偏转电压为U2,求电子射到荧光屏上的动能为多大?
试题篮
()