如图,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度为l的金属杆置于导轨上, 时,金属杆在水平向右、大小为F的恒定拉力作用下由静止开始运动,t 0时刻,金属杆进入磁感应强度大小为B、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g.求:
①金属杆在磁场中运动时产生的电动势的大小;
②电阻的阻值.
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图,在竖直平面内由 圆弧 和 圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接。 弧的半径为R, 弧的半径为 。一小球在A点正上方与A相距 处由静止开始自由下落,经A点沿圆弧轨道运动。
(1)求小球在B、A两点的动能之比;
(2)通过计算判断小球能否沿轨道运动到C点。
如图,一竖直圆管质量为 ,下端距水平地面的高度为 ,顶端塞有一质量为 的小球。圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直。已知 ,球和管之间的滑动摩擦力大小为 , 为重力加速度的大小,不计空气阻力。
(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;
(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度;
(3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件。
如图,在 , 区域中存在方向垂直于纸面的匀强磁场,磁感应强度 的大小可调,方向不变。一质量为 、电荷量为 的粒子以速度 从磁场区域左侧沿 轴进入磁场,不计重力。
(1)若粒子经磁场偏转后穿过 轴正半轴离开磁场,分析说明磁场的方向,并求在这种情况下磁感应强度的最小值 ;
(2)如果磁感应强度大小为 ,粒子将通过虚线所示边界上的一点离开磁场。求粒子在该点的运动方向与 轴正方向的夹角及该点到 轴的距离。
如图, 一轻弹簧原长为 , 其一端固定在倾角为 的固定直轨道 的底端 处, 另一端位于直轨道上 处, 弹簧处于自然状态, 直轨道与一半径为 的光滑圆弧轨道相切于 点, 均在同一竖直面内。质量为 的小物块 自 点由静止开 始下滑, 最低到达 点(末画出 , 随后 沿轨道被弹回, 最高点到达 点, , 已知
与直轨道间的动摩擦因数 , 重力加速度大小为 (取 )
(1) 求 P 第一次运动到 点时速度的大小。
(2) 求 运动到 点时弹簧的弹性势能。
(3) 改变物块 的质量, 将 推至 点, 从静止开始释放。已知 自圆弧轨道的最高点 处水平飞出后, 恰好通过 点。 点在 点左下方,与 点水平相距 、竖直相距 , 求 运动到 D 点时速度的大小和改变后 P 的质量。
为测量小铜块与瓷砖表面间的动摩擦因数,一同学将贴有标尺的瓷砖的一端放在水平桌面上,形成一倾角为 α的斜面(已知sin α=0.34,cos α=0.94),小铜块可在斜面上加速下滑,如图所示。该同学用手机拍摄小铜块的下滑过程,然后解析视频记录的图像,获得5个连续相等时间间隔(每个时间间隔Δ T=0.20 s)内小铜块沿斜面下滑的距离 s i( i=1,2,3,4,5),如下表所示。
s 1 |
s 2 |
s 3 |
s 4 |
s 5 |
5.87cn |
7.58cm |
9.31cm |
11.02cm |
12.74cm |
由表中数据可得,小铜块沿斜面下滑的加速度大小为_______m/s 2,小铜块与瓷砖表面间的动摩擦因数为_________。(结果均保留2位有效数字,重力加速度大小取9.80 m/s 2)
如图所示,一倾角为 的固定斜面的底端安装一弹性挡板, 、 两物块的质量分别为 和 , 静止于斜面上 处。某时刻, 以沿斜面向上的速度 与 发生弹性碰撞。 与斜面间的动摩擦因数等于 ,设最大静摩擦力等于滑动摩擦力。 与斜面间无摩擦,与挡板之间的碰撞无动能损失。两物块均可以看作质点,斜面足够长, 的速度减为零之前 不会与之发生碰撞。重力加速度大小为 。
(1)求 与 第一次碰撞后瞬间各自的速度大小 、 ;
(2)求第 次碰撞使物块 上升的高度 ;
(3)求物块 从 点上升的总高度 ;
(4)为保证在 的速度减为零之前 不会与之发生碰撞,求 点与挡板之间的最小距离 。
某型号质谱仪的工作原理如图甲所示。 、 为竖直放置的两金属板,两板间电压为 , 板为记录板,分界面 将 、 间区域分为宽度均为 的Ⅰ、Ⅱ两部分, 、 、 、 所在平面相互平行, 、 为 、 上两正对的小孔。以 、 所在直线为 轴,向右为正方向,取 轴与 板的交点 为坐标原点,以平行于 板水平向里为 轴正方向,竖直向上为 轴正方向,建立空间直角坐标系 .区域Ⅰ、Ⅱ内分别充满沿 轴正方向的匀强磁场和匀强电场,磁感应强度大小、电场强度大小分别为 和 .一质量为 ,电荷量为 的粒子,从 孔飘入电场(初速度视为零),经 孔进入磁场,过 面上的 点(图中未画出)进入电场,最终打到记录板 上。不计粒子重力。
(1)求粒子在磁场中做圆周运动的半径 以及 点到 轴的距离 ;
(2)求粒子打到记录板上位置的 坐标;
(3)求粒子打到记录板上位置的 坐标(用 、 表示);
(4)如图乙所示,在记录板上得到三个点 、 、 ,若这三个点是质子 、氚核 、氦核 的位置,请写出这三个点分别对应哪个粒子(不考虑粒子间的相互作用,不要求写出推导过程)。
如图所示,一轻绳吊着粗细均匀的棒,棒下端离地面高H,上端套着一个细环,棒和环的质量均为m,相互间最大静摩擦力等于滑动摩擦力kmg(k>1)。断开轻绳,棒和环自由下落。假设棒足够长,与地面发生碰撞时,触地时间极短,无动能损失.棒在整个运动过程中始终保持竖直,空气阻力不计。求:
(1)从断开轻绳到棒和环都静止,摩擦力对环及棒做的总功W.
(2)从断开轻绳到棒和环都静止,棒运动的总路程s.
如图甲所示,有一倾角为300的光滑固定斜面,斜面底端的水平面上放一质量为M的木板.开始时质量为m =1kg的滑块在水平向左的力F作用下静止在斜面上,今将水平力F变为水平向右大小不变,当滑块滑到木板上时撤去力F(假设斜面与木板连接处用小圆弧平滑连接)。此后滑块和木板在水平上运动的v-t图象如图乙所示,g=10 m/s2.求
(1)水平作用力F的大小;
(2)滑块开始下滑时的高度;
(3)木板的质量。
如图所示,长为L、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量为M=km的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g)
(1)求小物块下落过程中的加速度大小;
(2)求小球从管口抛出时的速度大小;
(3)试证明小球平抛运动的水平位移总小于
某地“欢乐谷”大型的游乐性主题公园,园内有一种大型游戏机叫“跳楼机”.让人体验短暂的“完全失重”,非常刺激.参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面50m高处,然后由静止释放.为研究方便,认为人与座椅沿轨道做自由落体运动2s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面5m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10m/s2)
求:(1)座椅在自由下落结束时刻的速度是多大?
(2)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?
如图所示的传送带,其水平部分ab的长度为2m,倾斜部分bc的长度为4m,bc与水平面的夹角为θ=370,将一小物块A(可视为质点)轻轻放于a端的传送带上,物块A与传送带间的动摩擦因数为μ=0.25.传送带沿图示方向以v=2m/s的速度匀速运动,若物块A始终未脱离皮带(g=10m/s2,sin370=0.6,cos370=0.8)。求:
(1)小物块从a端被传送到b端所用的时间
(2)小物块被传送到c端时的速度大小
(3)若当小物块到达b端时,传送到的速度突然增大为v',问v'的大小满足什么条件可以使小物块在传送带bc上运动所用的时间最短?
试题篮
()