优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题
初中数学

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = x 2 + bx + c 经过 A ( 0 , - 1 ) B ( 4 , 1 ) .直线 AB x 轴于点 C P 是直线 AB 下方抛物线上的一个动点.过点 P PD AB ,垂足为 D PE / / x 轴,交 AB 于点 E

(1)求抛物线的函数表达式;

(2)当 ΔPDE 的周长取得最大值时,求点 P 的坐标和 ΔPDE 周长的最大值;

(3)把抛物线 y = x 2 + bx + c 平移,使得新抛物线的顶点为(2)中求得的点 P M 是新抛物线上一点, N 是新抛物线对称轴上一点,直接写出所有使得以点 A B M N 为顶点的四边形是平行四边形的点 M 的坐标,并把求其中一个点 M 的坐标的过程写出来.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如果一个自然数 M 的个位数字不为0,且能分解成 A × B ,其中 A B 都是两位数, A B 的十位数字相同,个位数字之和为10,则称数 M 为"合和数",并把数 M 分解成 M = A × B 的过程,称为"合分解".

例如 609 = 21 × 29 ,21和29的十位数字相同,个位数字之和为10,

609 是"合和数".

又如 234 = 18 × 13 ,18和13的十位数相同,但个位数字之和不等于10,

234 不是"合和数".

(1)判断168,621是否是"合和数"?并说明理由;

(2)把一个四位"合和数" M 进行"合分解",即 M = A × B A 的各个数位数字之和与 B 的各个数位数字之和的和记为 P ( M ) A 的各个数位数字之和与 B 的各个数位数字之和的差的绝对值记为 Q ( M ) .令 G ( M ) = P ( M ) Q ( M ) ,当 G ( M ) 能被4整除时,求出所有满足条件的 M

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 ABCD 的顶点 D 在第二象限,其余顶点都在第一象限, AB / / x 轴, AO AD AO = AD .过点 A AE CD ,垂足为 E DE = 4 CE .反比例函数 y = k x ( x > 0 ) 的图象经过点 E ,与边 AB 交于点 F ,连接 OE OF EF .若 S ΔEOF = 11 8 ,则 k 的值为 (    )

A.

7 3

B.

21 4

C.

7

D.

21 2

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

若关于 x 的一元一次不等式组 3 x - 2 2 ( x + 2 ) a - 2 x < - 5 的解集为 x 6 ,且关于 y 的分式方程 y + 2 a y - 1 + 3 y - 8 1 - y = 2 的解是正整数,则所有满足条件的整数 a 的值之和是 (    )

A.

5

B.

8

C.

12

D.

15

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,相邻两个山坡上,分别有垂直于水平面的通信基站 MA ND .甲在山脚点 C 处测得通信基站顶端 M 的仰角为 60 ° ,测得点 C 距离通信基站 MA 的水平距离 CB 30 m ;乙在另一座山脚点 F 处测得点 F 距离通信基站 ND 的水平距离 FE 50 m ,测得山坡 DF 的坡度 i = 1 : 1 . 25 .若 ND = 5 8 DE ,点 C B E F 在同一水平线上,则两个通信基站顶端 M 与顶端 N 的高度差为(参考数据: 2 1 . 41 3 1 . 73 ) (    )

A.

9 . 0 m

B.

12 . 8 m

C.

13 . 1 m

D.

22 . 7 m

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的对角线 AC BD 交于点 O M 是边 AD 上一点,连接 OM ,过点 O ON OM ,交 CD 于点 N .若四边形 MOND 的面积是1,则 AB 的长为 (    )

A.

1

B.

2

C.

2

D.

2 2

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.

营养品信息表

营养成份

每千克含铁42毫克

配料表

原料

每千克含铁

甲食材

50毫克

乙食材

10毫克

规格

每包食材含量

每包单价

A 包装

1千克

45元

B 包装

0.25千克

12元

(1)问甲、乙两种食材每千克进价分别是多少元?

(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.

①问每日购进甲、乙两种食材各多少千克?

②已知每日其他费用为2000元,且生产的营养品当日全部售出.若 A 的数量不低于 B 的数量,则 A 为多少包时,每日所获总利润最大?最大总利润为多少元?

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图 2 ) ,则图1中所标注的 d 的值为   ;记图1中小正方形的中心为点 A B C ,图2中的对应点为点 A ' B ' C ' .以大正方形的中心 O 为圆心作圆,则当点 A ' B ' C ' 在圆内或圆上时,圆的最小面积为   

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

电子体重秤读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻 R 1 R 1 与踏板上人的质量 m 之间的函数关系式为 R 1 = km + b (其中 k b 为常数, 0 m 120 ) ,其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻 R 0 的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为 U 0 ,该读数可以换算为人的质量 m

温馨提示:①导体两端的电压 U ,导体的电阻 R ,通过导体的电流 I ,满足关系式 I = U R

②串联电路中电流处处相等,各电阻两端的电压之和等于总电压

(1)求 k b 的值;

(2)求 R 1 关于 U 0 的函数解析式;

(3)用含 U 0 的代数式表示 m

(4)若电压表量程为 0 ~ 6 伏,为保护电压表,请确定该电子体重秤可称的最大质量.

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

以初速度 v (单位: m / s ) 从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度 h (单位: m ) 与小球的运动时间 t (单位: s ) 之间的关系式是 h = vt - 4 . 9 t 2 .现将某弹性小球从地面竖直向上抛出,初速度为 v 1 ,经过时间 t 1 落回地面,运动过程中小球的最大高度为 h 1 (如图 1 ) ;小球落地后,竖直向上弹起,初速度为 v 2 ,经过时间 t 2 落回地面,运动过程中小球的最大高度为 h 2 (如图 2 ) .若 h 1 = 2 h 2 ,则 t 1 : t 2 =   

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题:如图,在 ABCD 中, AB = 8 AD = 5 DAB ABC 的平分线 AE BF 分别与直线 CD 交于点 E F ,求 EF 的长.

答案: EF = 2

探究:(1)把"问题"中的条件" AB = 8 "去掉,其余条件不变.

①当点 E 与点 F 重合时,求 AB 的长;

②当点 E 与点 C 重合时,求 EF 的长.

(2)把"问题"中的条件" AB = 8 AD = 5 "去掉,其余条件不变,当点 C D E F 相邻两点间的距离相等时,求 AD AB 的值.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC ΔABD 在同一平面内,点 C D 不重合, ABC = ABD = 30 ° AB = 4 AC = AD = 2 2 ,则 CD 长为   

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

数学兴趣小组同学从"中国结"的图案(图 1 ) 中发现,用相同的菱形纵向排列放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是 (    )

A.

用3个相同的菱形放置,最多能得到6个菱形

B.

用4个相同的菱形放置,最多能得到16个菱形

C.

用5个相同的菱形放置,最多能得到27个菱形

D.

用6个相同的菱形放置,最多能得到41个菱形

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,点 C 是半圆 O 的直径 AB 上一动点(不包括端点), AB = 6 cm ,过点 C CD AB 交半圆于点 D ,连结 AD ,过点 C CE / / AD 交半圆于点 E ,连结 EB .牛牛想探究在点 C 运动过程中 EC EB 的大小关系.他根据学习函数的经验,记 AC = xcm EC = y 1 cm EB = y 2 cm .请你一起参与探究函数 y 1 y 2 随自变量 x 变化的规律.

通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

x

0.30

0.80

1.60

2.40

3.20

4.00

4.80

5.60

y 1

2.01

2.98

3.46

3.33

2.83

2.11

1.27

0.38

y 2

5.60

4.95

3.95

2.96

2.06

1.24

0.57

0.10

(1)当 x = 3 时, y 1 =   

(2)在图2中画出函数 y 2 的图象,并结合图象判断函数值 y 1 y 2 的大小关系.

(3)由(2)知" AC 取某值时,有 EC = EB ".如图3,牛牛连结了 OE ,尝试通过计算 EC EB 的长来验证这一结论,请你完成计算过程.

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学试题