在等边 中, , ,垂足为 ,点 为 边上一点,点 为直线 上一点,连接 .
(1)将线段 绕点 逆时针旋转 得到线段 ,连接 .
①如图1,当点 与点 重合,且 的延长线过点 时,连接 ,求线段 的长;
②如图2,点 不与点 , 重合, 的延长线交 边于点 ,连接 ,求证: ;
(2)如图3,当点 为 中点时,点 为 中点,点 在边 上,且 ,点 从 中点 沿射线 运动,将线段 绕点 顺时针旋转 得到线段 ,连接 ,当 最小时,直接写出 的面积.
如图,在平面直角坐标系中, 经过原点 ,分别交 轴、 轴于点 , ,连结 .直线 分别交 于点 , (点 在左侧),交 轴于点 ,连结 .
(1)求 的半径和直线 的函数表达式;
(2)求点 , 的坐标;
(3)点 在线段 上,连结 .当 与 的一个内角相等时,求所有满足条件的 的长.
如图, 是半径为3的 的一条弦, ,点 是 上的一个动点(不与点 , 重合),以 , , 为顶点作 .
(1)如图2,若点 是劣弧 的中点.
①求证: 是菱形;
②求 的面积.
(2)若点 运动到优弧 上,且 有一边与 相切.
①求 的长;
②写出 对角线所夹锐角的正切值.
如图,矩形 中, ,点 是边 的中点,点 是对角线 上一动点, .连结 ,作点 关于直线 的对称点 .
(1)若 ,求 的长;
(2)若 ,求 的长;
(3)直线 交 于点 ,若 是锐角三角形,求 长的取值范围.
【推理】
如图1,在正方形 中,点 是 上一动点,将正方形沿着 折叠,点 落在点 处,连结 , ,延长 交 于点 .
(1)求证: .
【运用】
(2)如图2,在【推理】条件下,延长 交 于点 .若 , ,求线段 的长.
【拓展】
(3)将正方形改成矩形,同样沿着 折叠,连结 ,延长 , 交直线 于 , 两点,若 , ,求 的值(用含 的代数式表示).
如图1,四边形 内接于 , 为直径, 上存在点 ,满足 ,连结 并延长交 的延长线于点 , 与 交于点 .
(1)若 ,请用含 的代数式表示 .
(2)如图2,连结 , .求证: .
(3)如图3,在(2)的条件下,连结 , .
①若 ,求 的周长.
②求 的最小值.
如图,在菱形 中, 是锐角, 是 边上的动点,将射线 绕点 按逆时针方向旋转,交直线 于点 .
(1)当 , 时,
①求证: ;
②连结 , ,若 ,求 的值;
(2)当 时,延长 交射线 于点 ,延长 交射线 于点 ,连结 , ,若 , ,则当 为何值时, 是等腰三角形.
在平面直角坐标系中,点 的坐标为 , ,点 在直线 上,过点 作 的垂线,过原点 作直线 的垂线,两垂线相交于点 .
(1)如图,点 , 分别在第三、二象限内, 与 相交于点 .
①若 ,求证: .
②若 ,求四边形 的面积.
(2)是否存在点 ,使得以 , , 为顶点的三角形与 相似?若存在,求 的长;若不存在,请说明理由.
小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形 绕点 顺时针旋转 ,得到矩形 ,连结 .
探究 如图1,当 时,点 恰好在 延长线上.若 ,求 的长.
探究 如图2,连结 ,过点 作 交 于点 .线段 与 相等吗?请说明理由.
探究 在探究2的条件下,射线 分别交 , 于点 , (如图 ,发现线段 , , 存在一定的数量关系,请写出这个关系式,并加以证明.
已知在平面直角坐标系 中,点 是反比例函数 图象上的一个动点,连结 , 的延长线交反比例函数 的图象于点 ,过点 作 轴于点 .
(1)如图1,过点 作 轴,于点 ,连接 .
①若 ,求证:四边形 是平行四边形;
②连结 ,若 ,求 的面积.
(2)如图2,过点 作 ,交反比例函数 的图象于点 ,连结 .试探究:对于确定的实数 ,动点 在运动过程中, 的面积是否会发生变化?请说明理由.
已知抛物线 经过点 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小.设 是抛物线 与 轴的交点(交点也称公共点)的横坐标, .
(1)求 、 的值;
(2)求证: ;
(3)以下结论: , , ,你认为哪个正确?请证明你认为正确的那个结论.
已知抛物线 , 为常数, 经过点 ,顶点为 .
(Ⅰ)当 时,求该抛物线的顶点坐标;
(Ⅱ)当 时,点 ,若 ,求该抛物线的解析式;
(Ⅲ)当 时,点 ,过点 作直线 平行于 轴, 是 轴上的动点, 是直线 上的动点.当 为何值时, 的最小值为 ,并求此时点 , 的坐标.
如图,抛物线 (其中 与 轴交于 、 两点,交 轴于点 .
(1)写出 的度数和线段 的长(用 表示);
(2)若点 为 的外心,且 与 的周长之比为 ,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线 上是否存在一点 ,使得 ?若存在,求出点 的坐标;若不存在,请说明理由.
抛物线 与 轴交于 、 两点,与 轴交于点 ,且 , .
(1)求抛物线的解析式;
(2)如图1,点 是抛物线上位于直线 上方的一点, 与 相交于点 ,当 时,求点 的坐标;
(3)如图2,点 是抛物线的顶点,将抛物线沿 方向平移,使点 落在点 处,且 ,点 是平移后所得抛物线上位于 左侧的一点, 轴交直线 于点 ,连结 .当 的值最小时,求 的长.
试题篮
()