已知四边形 是边长为1的正方形,点 是射线 上的动点,以 为直角边在直线 的上方作等腰直角三角形 , ,设 .
(1)如图,若点 在线段 上运动, 交 于点 , 交 于点 ,连结 ,
①当 时,求线段 的长;
②在 中,设边 上的高为 ,请用含 的代数式表示 ,并求 的最大值;
(2)设过 的中点且垂直于 的直线被等腰直角三角形 截得的线段长为 ,请直接写出 与 的关系式.
如图,抛物线 与 轴交于 , ,与 轴交于点 .连接 , ,点 在抛物线上运动.
(1)求抛物线的表达式;
(2)如图①,若点 在第四象限,点 在 的延长线上,当 时,求点 的坐标;
(3)如图②,若点 在第一象限,直线 交 于点 ,过点 作 轴的垂线交 于点 ,当 为等腰三角形时,求线段 的长.
如图,在矩形 中,线段 、 分别平行于 、 ,它们相交于点 ,点 、 分别在线段 、 上, , ,连接 、 , 与 相交于点 .已知 ,设 , .
(1)四边形 的面积 四边形 的面积(填" "、" "或" "
(2)求证:△ △ ;
(3)设四边形 的面积为 ,四边形 的面积为 ,求 的值.
在几何体表面上,蚂蚁怎样爬行路径最短?
(1)如图①,圆锥的母线长为 , 为母线 的中点,点 在底面圆周上, 的长为 .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 爬行到点 的最短路径,并标出它的长(结果保留根号).
(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. 是圆锥的顶点,点 在圆柱的底面圆周上,设圆锥的母线长为 ,圆柱的高为 .
①蚂蚁从点 爬行到点 的最短路径的长为 (用含 , 的代数式表示).
②设 的长为 ,点 在母线 上, .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 爬行到点 的最短路径的示意图,并写出求最短路径的长的思路.
在数学兴趣小组活动中,小亮进行数学探究活动.
(1) 是边长为3的等边三角形, 是边 上的一点,且 ,小亮以 为边作等边三角形 ,如图1.求 的长;
(2) 是边长为3的等边三角形, 是边 上的一个动点,小亮以 为边作等边三角形 ,如图2.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(3) 是边长为3的等边三角形, 是高 上的一个动点,小亮以 为边作等边三角形 ,如图3.在点 从点 到点 的运动过程中,求点 所经过的路径长;
(4)正方形 的边长为3, 是边 上的一个动点,在点 从点 到点 的运动过程中,小亮以 为顶点作正方形 ,其中点 、 都在直线 上,如图4.当点 到达点 时,点 、 、 与点 重合.则点 所经过的路径长为 ,点 所经过的路径长为 .
如图,在平面直角坐标系 中,正比例函数 和二次函数 的图象都经过点 和点 ,过点 作 的垂线交 轴于点 . 是线段 上一点(点 与点 、 、 不重合), 是射线 上一点,且 ,连接 ,过点 作 轴的垂线交抛物线于点 ,以 、 为邻边作 .
(1)填空: , ;
(2)设点 的横坐标是 ,连接 .若 ,求 的值;
(3)过点 作 的垂线交线段 于点 若 ,求 的长.
如图,在平面直角坐标系中,二次函数 的图象经过点 ,点 .
(1)求此二次函数的解析式;
(2)当 时,求二次函数 的最大值和最小值;
(3)点 为此函数图象上任意一点,其横坐标为 ,过点 作 轴,点 的横坐标为 .已知点 与点 不重合,且线段 的长度随 的增大而减小.
①求 的取值范围;
②当 时,直接写出线段 与二次函数 的图象交点个数及对应的 的取值范围.
在平面直角坐标系中,抛物线 为常数)的顶点为 .
(1)当 时,点 的坐标是 ,抛物线与 轴交点的坐标是 ;
(2)若点 在第一象限,且 ,求此抛物线所对应的二次函数的表达式,并写出函数值 随 的增大而减小时 的取值范围;
(3)当 时,若函数 的最小值为3,求 的值;
(4)分别过点 、 作 轴的垂线,交抛物线的对称轴于点 、 .当抛物线 与四边形 的边有两个交点时,将这两个交点分别记为点 、点 ,且点 的纵坐标大于点 的纵坐标.若点 到 轴的距离与点 到 轴的距离相等,直接写出 的值.
已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图象与 轴交于点 , 、 , ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
如图,点 为以 为直径的半圆的圆心,点 , 在直径 上,点 , 在 上,四边形 为正方形,点 在 上运动(点 与点 , 不重合),连接 并延长交 的延长线于点 ,连接 交 于点 ,连接 .
(1)求 的值;
(2)求 的值;
(3)令 , ,直径 , 是常数),求 关于 的函数解析式,并指明自变量 的取值范围.
如图,已知二次函数 的图象经过点 ,且与 轴交于原点及点 .
(1)求二次函数的表达式;
(2)求顶点 的坐标及直线 的表达式;
(3)判断 的形状,试说明理由;
(4)若点 为 上的动点,且 的半径为 ,一动点 从点 出发,以每秒2个单位长度的速度沿线段 匀速运动到点 ,再以每秒1个单位长度的速度沿线段 匀速运动到点 后停止运动,求点 的运动时间 的最小值.
如图,抛物线 经过 , 两点,与 轴交于点 ,连接 .
(1)求该抛物线的函数表达式;
(2)如图2,直线 经过点 ,点 为直线 上的一个动点,且位于 轴的上方,点 为抛物线上的一个动点,当 轴时,作 ,交抛物线于点 (点 在点 的右侧),以 , 为邻边构造矩形 ,求该矩形周长的最小值;
(3)如图3,设抛物线的顶点为 ,在(2)的条件下,当矩形 的周长取最小值时,抛物线上是否存在点 ,使得 ?若存在,请求出点 的坐标;若不存在,请说明理由.
如图,在 中,点 为斜边 上一动点,将 沿直线 折叠,使得点 的对应点为 ,连接 , , , .
(1)如图①,若 ,证明: .
(2)如图②,若 , ,求 的值.
(3)如图③,若 ,是否存在点 ,使得 .若存在,求此时 的值;若不存在,请说明理由.
如图,在直角坐标系中,二次函数 的图象与 轴相交于点 和点 ,与 轴交于点 .
(1)求 、 的值;
(2)点 为抛物线上的动点,过 作 轴的垂线交直线 于点 .
①当 时,求当 点到直线 的距离最大时 的值;
②是否存在 ,使得以点 、 、 、 为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出 的值.
如图所示,抛物线与 轴交于 、 两点,与 轴交于点 ,且 , , ,抛物线的对称轴与直线 交于点 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)若点 是对称轴上的一个动点,是否存在以 、 、 为顶点的三角形与 相似?若存在,求出点 的坐标,若不存在,请说明理由;
(3) 为 的中点,一个动点 从 点出发,先到达 轴上的点 ,再走到抛物线对称轴上的点 ,最后返回到点 .要使动点 走过的路程最短,请找出点 、 的位置,写出坐标,并求出最短路程.
(4)点 是抛物线上位于 轴上方的一点,点 在 轴上,是否存在以点 为直角顶点的等腰 ?若存在,求出点 的坐标,若不存在,请说明理由.
试题篮
()