优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 有理数的混合运算
初中数学

某检修小组从A地出发,在东西朝向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下.(单位:km)

第一次
第二次
第三次
第四次
第五次
第六次
第七次
﹣4
+7
﹣9
+8
+6
﹣5
﹣2

(1)求收工时距A地多远?
(2)若每km耗油0.3升,问共耗油多少升?

  • 题型:未知
  • 难度:未知

(1)计算: ( 1 ) 4 × | 8 | + ( 2 ) 3 × ( 1 2 ) 2

(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.

2 x 1 3 > 3 x 2 2 1

解: 2 ( 2 x 1 ) > 3 ( 3 x 2 ) 6 第一步

4 x 2 > 9 x 6 6 第二步

4 x 9 x > 6 6 + 2 第三步

5 x > 10 第四步

x > 2 第五步

任务一:填空:①以上解题过程中,第二步是依据     (运算律)进行变形的;

②第   步开始出现错误,这一步错误的原因是   

任务二:请直接写出该不等式的正确解集.

来源:2021年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

己知a、b为有理数,且ab>0,则的值是   (   )

A.3 B.-1 C.-3或1 D.3或-1
  • 题型:未知
  • 难度:未知

某公司去年 1~3月平均每月亏损 1.5 万元,4~6 月平均每月赢利 2 万元,7~10 月平均每月赢利 1.7 万元,11~12 月平均每月亏损 2.3 万元,问:这个公司去年总的盈、亏情况如何?

  • 题型:未知
  • 难度:未知

为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的收费标准如下表:

例如:某户居民1月份用水8立方米,应收水费为2×6+4×(8-6)=20(元).
请根据上表的内容解答下列问题:
(1)若某户居民2月份用水5立方米,则应收水费多少元?
(2)若某户居民3月份交水费36元,则用水量为多少立方米?
(3)若某户居民4月份用水a立方米(其中6<a<10),请用含a的代数式表示应收水费.
(4)若某户居民5、6两个月共用水18立方米(6月份用水量超过了10立方米),设5月份用水x立方米,请用含x的代数式表示该户居民5、6两个月共交水费多少元.

  • 题型:未知
  • 难度:未知

高斯函数 [ x ] ,也称为取整函数,即 [ x ] 表示不超过 x 的最大整数.

例如: [ 2 . 3 ] = 2 [ 1 . 5 ] = 2

则下列结论:

[ 2 . 1 ] + [ 1 ] = 2

[ x ] + [ x ] = 0

③若 [ x + 1 ] = 3 ,则 x 的取值范围是 2 x < 3

④当 1 x < 1 时, [ x + 1 ] + [ x + 1 ] 的值为0、1、2.

其中正确的结论有  (写出所有正确结论的序号).

来源:2016年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

仔细观察下列三组数:
第一组:1,4,9,16,25,…
第二组:1,8,27,64,125,…
第三组:﹣2,﹣8,﹣18,﹣32,﹣50,…
(1)写出每组的第6个数各是多少?
(2)第二组的第100个数是第一组的第100个数的多少倍?
(3)取每组数的第n个数,计算这三个数的和.

  • 题型:未知
  • 难度:未知

自从有了用字母表示数,我们发现表达有关的数和数量关系更加的简洁明了,从而更助于发现更多有趣的结论,请你按要求试一试:
(1)填空:
①32﹣22=      ; (3+2)×(3﹣2)=     
②22﹣52=      ;  (2+5)×(2﹣5)=     
(2)猜一猜:a2﹣b2与(a+b)(a﹣b)的大小关系是     
(3)利用你发现的结论,算一算:20152﹣20172

  • 题型:未知
  • 难度:未知

如图,某学校"桃李餐厅"把 WIFI 密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了"桃李餐厅"的网络.那么她输入的密码是   

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读以下材料:

苏格兰数学家纳皮尔 ( J Npler 1550 - 1617 年)是对数的创始人.他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉 ( Evler 1707 - 1783 年)才发现指数与对数之间的联系.

对数的定义:一般地,若 a x = N ( a > 0 a 1 ) ,那么 x 叫做以 a 为底 N 的对数,记作 x = log a N ,比如指数式 2 4 = 16 可以转化为对数式 4 = log 2 16 ,对数式 2 = log 3 9 可以转化为指数式 3 2 = 9

我们根据对数的定义可得到对数的一个性质:

log a ( M N ) = log a M + log a N ( a > 0 a 1 M > 0 N > 0 ) ,理由如下:

log a M = m log a N = n ,则 M = a m N = a n

M N = a m a n = a m + n ,由对数的定义得 m + n = log a ( M N )

m + n = log a M + log a N

log a ( M N ) = log a M + log a N

根据上述材料,结合你所学的知识,解答下列问题:

(1)填空:① log 2 32 =   ,② log 3 27 =   ,③ log 7 1 =   

(2)求证: log a M N = log a M - log a N ( a > 0 a 1 M > 0 N > 0 )

(3)拓展运用:计算 log 5 125 + log 5 6 - log 5 30

来源:2021年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

(1)计算: ( - 4 ) 2 × ( - 1 2 ) 3 - ( - 4 + 1 )

(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.

x 2 - 9 x 2 + 6 x + 9 - 2 x + 1 2 x + 6

= ( x + 3 ) ( x - 3 ) ( x + 3 ) 2 - 2 x + 1 2 ( x + 3 ) 第一步

= x - 3 x + 3 - 2 x + 1 2 ( x + 3 ) 第二步

= 2 ( x - 3 ) 2 ( x + 3 ) - 2 x + 1 2 ( x + 3 ) 第三步

= 2 x - 6 - ( 2 x + 1 ) 2 ( x + 3 ) 第四步

= 2 x - 6 - 2 x + 1 2 ( x + 3 ) 第五步

= - 5 2 x + 6 第六步

任务一:填空:

①以上化简步骤中,第  步是进行分式的通分,通分的依据是  .或填为:  

②第  步开始出现错误,这一步错误的原因是  

任务二:请直接写出该分式化简后的正确结果;

任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为        个.

来源:2018年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

计算: 5 × 2 + 3 ÷ 1 3 ( 1 )

来源:2019年广西梧州市中考数学试卷
  • 题型:未知
  • 难度:未知

计算:  

来源:2017年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为(  )

A.1,2 B.1,3 C.4,2 D.4,3
  • 题型:未知
  • 难度:未知

初中数学有理数的混合运算试题