如图,四边形 是边长为1的正方形,以对角线 为边作第二个正方形 .连接 ,得到△ ;再以对角线 为边作第三个正方形 ,连接 ,得到△ ;再以对角线 为边作第四个正方形,连接 ,得到△ 记△ 、△ 、△ 的面积分别为 、 、 ,如此下去,则 .
下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒, ,按此规律,图案⑦需 根火柴棒.
将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆 按此规律排列下去,则前50行共有圆 个.
如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍; 照这样拼图,则第 个图形需要 根火柴棍.
如图,已知等边 的边长是2,以 边上的高 为边作等边三角形,得到第一个等边△ ;再以等边△ 的 边上的高 为边作等边三角形,得到第二个等边△ ;再以等边△ 的 边上的高 为边作等边三角形,得到第三个等边△ ; .记△ 面积为 ,△ 面积为 ,△ 面积为 ,则 .
已知直线 和直线 ,其中 为不小于2的自然数.
(1)当 时,直线 、 与 轴围成的三角形的面积 ;
(2)当 、3、4, ,2018时,设直线 、 与 轴围成的三角形的面积分别为 , , , , ,则 .
如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形 ,则第(5)个图案中有 个正方形,第 个图案中有 个正方形.
如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第 个图案中白色正方形比黑色正方形多 个.(用含 的代数式表示)
如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成; 按照此规律,第 个图中正方形和等边三角形的个数之和为 个.
如图,点 的坐标为 ,过点 作 轴的垂线交直线 于点 ,以原点 为圆心, 的长为半径画弧交 轴正半轴于点 ;再过点 作 轴的垂线交直线 于点 ,以原点 为圆心,以 的长为半径画弧交 轴正半轴于点 ; .按此作法进行下去,则 的长是 .
如图,四边形 是正方形,曲线 是由一段段90度的弧组成的.其中: 的圆心为点 ,半径为 ; 的圆心为点 ,半径为 ; 的圆心为点 ,半径为 ; 的圆心为点 ,半径为 ; , 的圆心依次按点 , , , 循环.若正方形 的边长为1,则 的长是 .
庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言) .
图2也是一种无限分割:在 中, , ,过点 作 于点 ,再过点 作 于点 ,又过点 作 于点 ,如此无限继续下去,则可将利 分割成 、△ 、△ 、△ 、 、△ 、 .假设 ,这些三角形的面积和可以得到一个等式是 .
试题篮
()