如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红(绿)灯亮的时间相同,红灯亮的时间与绿灯亮的时间也相同.若绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以相同的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,则每次绿灯亮的时间可能设置为( )
A.50秒 | B.45秒 | C.40秒 | D.35秒 |
如图,将1、、三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( )
A. | B. | C. | D.1 |
对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是( )
A.a<0,b<0 |
B.a>0,b<0且|b|<a |
C.a<0,b>0且|a|<b |
D.a>0,b<0且|b|>a |
刘谦的魔术表演风靡全国,小明同学也学起了刘谦发明了一个魔术盒,当任意有理数对(a,b)进入其中时,会得到一个新的有理数:a2+b-1.例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将有理数对(-1,-2)放入其中,则会得到( )
A.-1 | B.-2 | C.-3 | D.2 |
在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:
S=1+62+63+64+65+66+67+68+69①
然后在①式的两边都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:
如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( )
A. | B. | C. | D.a2014﹣1 |
一对小兔子从出生到第三个月就可以长大,并且生一对小兔子,以后每个月可以生一对小兔子,新生的小兔子三个月后又可以生小兔子.如果你也有一对刚出生的小兔子,那么到第10个月你所有的兔子的对数是( )
A.9 | B.89 | C.21 | D.28 |
王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、7、9、8、6.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 008后,A、B、C、D、E五个组中的人数依次是( )
A.9、6、8、7、10
B.7、9、6、10、8
C.6、8、10、9、7
D.8、10、7、6、9
将正偶数按下表排成5列
|
第1列 |
第2列 |
第3列 |
第4列 |
第5列 |
第1行 |
|
2 |
4 |
6 |
8 |
第2行 |
16 |
14 |
12 |
10 |
|
第3行 |
|
18 |
20 |
22 |
24 |
第4行 |
32 |
30 |
28 |
26 |
|
… |
|
… |
|
|
|
根据上面排列的规律,2012应排在( )
A.第502行第1列
B.第250行第5列
C.第251行第4列
D.第252行第3列
将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )
A.5 | B.4 | C.3 | D.2 |
四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是( )
A.小沈 | B.小叶 | C.小李 | D.小王 |
一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=,16=).已知智慧数按从小到大顺序构成如下数列:
3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….
则第2006个智慧数是( )
A.2672 | B.2675 | C.2677 | D.2680 |
一对小兔子从出生到第三个月就可以长大,并且生一对小兔子,以后每个月可以生一对小兔子,新生的小兔子三个月后又可以生小兔子.如果你也有一对刚出生的小兔子,那么到第10个月你所有的兔子的对数是( )
A.9 | B.89 | C.21 | D.28 |
试题篮
()