我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有 匹,大马有 匹,则下列方程组中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 场.
某公司分别在 , 两城生产同种产品,共100件. 城生产产品的总成本 (万元)与产品数量 (件 之间具有函数关系 .当 时, ;当 时, . 城生产产品的每件成本为70万元.
(1)求 , 的值;
(2)当 , 两城生产这批产品的总成本的和最少时,求 , 两城各生产多少件?
(3)从 城把该产品运往 , 两地的费用分别为 万元 件和3万元 件;从 城把该产品运往 , 两地的费用分别为1万元 件和2万元 件. 地需要90件, 地需要10件,在(2)的条件下,直接写出 , 两城总运费的和的最小值(用含有 的式子表示).
我国古代数学著作《孙子算经》中有"鸡兔同笼"问题:"今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何".设鸡有 只,兔有 只,则根据题意,下列方程组中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往 地240吨, 地260吨,运费如下表(单位:元 吨).
目的地 生产厂 |
|
|
甲 |
20 |
25 |
乙 |
15 |
24 |
(1)求甲、乙两厂各生产了这批防疫物资多少吨?
(2)设这批物资从乙厂运往 地 吨,全部运往 , 两地的总运费为 元.求 与 之间的函数关系式,并设计使总运费最少的调运方案;
(3)当每吨运费均降低 元 且 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求 的最小值.
我国传统数学名著《九章算术》记载:"今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?"译文:"假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?"根据以上译文,提出以下两个问题:
(1)求每头牛、每只羊各值多少两银子?
(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.
我国古代数学著作《九章算术》"盈不足"一章中记载:"今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何".意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒 斛,1个小桶盛酒 斛,下列方程组正确的是
A. |
|
B. |
|
C. |
|
D. |
|
一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量(件与售价(元件)为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
(元件) |
4 |
5 |
6 |
(件 |
10000 |
9500 |
9000 |
(1)求与的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元件时,每销售一件商品便向某慈善机构捐赠元,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出的取值范围.
为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元 个,乙种型号水杯进价为45元 个,下表是前两月两种型号水杯的销售情况:
时间 |
销售数量(个 |
销售收入(元 (销售收入 售价 销售数量) |
|
甲种型号 |
乙种型号 |
||
第一月 |
22 |
8 |
1100 |
第二月 |
38 |
24 |
2460 |
(1)求甲、乙两种型号水杯的售价;
(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种型号水杯 个,利润为 元,写出 与 的函数关系式,并求出第三月的最大利润.
黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,、之间的部分数值对应关系如表:
销售单价(元件) |
11 |
19 |
日销售量(件 |
18 |
2 |
请写出当时,与之间的函数关系式.
(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?
"十 一"国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了49座和37座两种客车共10辆,刚好坐满,设49座客车 辆,37座客车 辆.根据题意,得
A. |
|
B. |
|
C. |
|
D. |
|
某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克元,售价每千克16元;乙种蔬菜进价每千克元,售价每千克18元.
(1)该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元,求,的值.
(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜千克为正整数),求有哪几种购买方案.
(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出元,乙种蔬菜每千克捐出元给当地福利院,若要保证捐款后的利润率不低于,求的最大值.
在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买 、 、 三种奖品, 种每个10元, 种每个20元, 种每个30元,在 种奖品不超过两个且钱全部用完的情况下,有多少种购买方案
A. |
12种 |
B. |
15种 |
C. |
16种 |
D. |
14种 |
某商场准备购进,两种书包,每个种书包比种书包的进价少20元,用700元购进种书包的个数是用450元购进种书包个数的2倍,种书包每个标价是90元,种书包每个标价是130元.请答案下列问题:
(1),两种书包每个进价各是多少元?
(2)若该商场购进种书包的个数比种书包的2倍还多5个,且种书包不少于18个,购进,两种书包的总费用不超过5450元,则该商场有哪几种进货方案?
(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,种书包各有几个?
试题篮
()