小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔 元,每本笔记本 元,则可列方程组
A. B.
C. D.
某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为 元,水笔每支为 元,那么根据题意,下列方程组中,正确的是
A. B.
C. D.
某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了 张甲种票, 张乙种票,则所列方程组正确的是
A. B.
C. D.
篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜 场,负 场,则可列出方程组为 .
夏季来临,某超市试销 、 两种型号的风扇,两周内共销售30台,销售收入5300元, 型风扇每台200元, 型风扇每台150元,问 、 两种型号的风扇分别销售了多少台?若设 型风扇销售了 台, 型风扇销售了 台,则根据题意列出方程组为
A. B.
C. D.
5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施 月份,甲工厂用水量比5月份减少了 ,乙工厂用水量比5月份减少了 ,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为 吨,乙工厂5月份用水量为 吨,根据题意列关于 , 的方程组为 .
《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有 文钱,乙原有 文钱,可列方程组是 .
《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为 人,物价为 钱,以下列出的方程组正确的是
A. B.
C. D.
某班共有学生45人,其中男生的2倍比女生的3倍少10人.设该班的男生有 人,女生有 人,请列出满足题意的方程组 .
某班学生去看演出,甲种票每张30元,乙种票每张20元,如果36名学生购票恰好用去860元,设甲种票买了 张,乙种票买了 张,依据题意,可列方程组为 .
某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有 人,绘画小组有 人,那么可列方程组为
A. B.
C. D.
我国古代数学著作《增删算法统宗》记载"绳索量竿"问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托."其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长 尺,竿长 尺,则符合题意的方程组是
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学著作《增删算法统宗》记载"绳索量竿"问题:"一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托."其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长 尺,竿长 尺,则符合题意的方程组是
A. |
|
B. |
|
C. |
|
D. |
|
我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音 ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒 斛,1个小桶可以盛酒 斛,根据题意,可列方程组为 .
试题篮
()