优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 配方法的应用
初中数学

在直角坐标系中,设函数 y = a x 2 + bx + 1 ( a b 是常数, a 0 )

(1)若该函数的图象经过 ( 1 , 0 ) ( 2 , 1 ) 两点,求函数的表达式,并写出函数图象的顶点坐标;

(2)写出一组 a b 的值,使函数 y = a x 2 + bx + 1 的图象与 x 轴有两个不同的交点,并说明理由.

(3)已知 a = b = 1 ,当 x = p q ( p q 是实数, p q ) 时,该函数对应的函数值分别为 P Q .若 p + q = 2 ,求证: P + Q > 6

来源:2021年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

先阅读理解下面的例题,再按要求解答下列问题:
例题 :求代数式的最小值.
解:
  
的最小值是
(1)代数式的最小值         ;
(2)求代数式的最小值;
(3)某居民小区要在一块一边靠墙(墙长)的空地上建一个长方形花园,花园一边靠墙,另三边用总长为的栅栏围成.如图,设),请问:当取何值时,花园的面积最大?最大面积是多少?

  • 题型:未知
  • 难度:未知

初中数学配方法的应用试题