优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 一次函数的应用
初中数学

某市推出电脑上网包月制,每月收取费用 y (元 ) 与上网时间 x (小时)的函数关系如图所示,其中 BA 是线段,且 BA / / x 轴, AC 是射线.

(1)当 x 30 ,求 y x 之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元的上网费用?

(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

来源:2018年浙江省杭州市临安市中考数学试卷
  • 题型:未知
  • 难度:未知

甲、乙两人分别从 A B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达 B 地后,乙继续前行.设出发 xℎ 后,两人相距 ykm ,图中折线表示从两人出发至乙到达 A 地的过程中 y x 之间的函数关系.

根据图中信息,求:

(1)点 Q 的坐标,并说明它的实际意义;

(2)甲、乙两人的速度.

来源:2018年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始 4 min 内只进水不出水,从第 4 min 到第 24 min 内既进水又出水,从第 24 min 开始只出水不进水,容器内水量 y (单位: L ) 与时间 x (单位: min ) 之间的关系如图所示,则图中 a 的值是 (    )

A.

32

B.

34

C.

36

D.

38

来源:2020年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离 y (米 ) 与乙出发的时间 x (秒 ) 之间的函数关系如图所示,则下列结论正确的个数是 (    )

①乙的速度为5米 / 秒;

②离开起点后,甲、乙两人第一次相遇时,距离起点12米;

③甲、乙两人之间的距离超过32米的时间范围是 44 < x < 89

④乙到达终点时,甲距离终点还有68米.

A.

4

B.

3

C.

2

D.

1

来源:2021年内蒙古赤峰市中考数学试卷
  • 题型:未知
  • 难度:未知

为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往 A 地240吨, B 地260吨,运费如下表(单位:元 / 吨).

目的地

生产厂

A

B

20

25

15

24

(1)求甲、乙两厂各生产了这批防疫物资多少吨?

(2)设这批物资从乙厂运往 A x 吨,全部运往 A B 两地的总运费为 y 元.求 y x 之间的函数关系式,并设计使总运费最少的调运方案;

(3)当每吨运费均降低 m ( 0 < m 15 m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求 m 的最小值.

来源:2020年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

来源:2018年山东省莱芜市中考数学试卷
  • 题型:未知
  • 难度:未知

某校足球队需购买 A B 两种品牌的足球.已知 A 品牌足球的单价比 B 品牌足球的单价高20元,且用900元购买 A 品牌足球的数量用720元购买 B 品牌足球的数量相等.

(1)求 A B 两种品牌足球的单价;

(2)若足球队计划购买 A B 两种品牌的足球共90个,且 A 品牌足球的数量不小于 B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买 A 品牌足球 m 个,总费用为 W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?

来源:2020年湖北省恩施州中考数学试卷
  • 题型:未知
  • 难度:未知

某绿色食品有限公司准备购进AB两种蔬菜,B种蔬菜每吨的进价比A中蔬菜每吨的进价多0.5万元,经计算用4.5万元购进的A种蔬菜的吨数与用6万元购进的B种蔬菜的吨数相同,请解答下列问题:

(1)求AB两种蔬菜每吨的进价;

(2)该公司计划用14万元同时购进AB两种蔬菜,若A种蔬菜以每吨2万元的价格出售,B种蔬菜以每吨3万元的价格出售,且全部售出,请求出所获利润W(万元)与购买A种蔬菜的资金a(万元)之间的函数关系式;

(3)在(2)的条件下,要求A种蔬菜的吨数不低于B种蔬菜的吨数,若公司欲将(2)中的最大利润全部用于购买甲、乙两种型号的电脑赠给某中学,甲种电脑每台2100元,乙种电脑每台2700元,请直接写出有几种购买电脑的方案.

来源:2016年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

某周日上午 8 : 00 小宇从家出发,乘车1小时到达某活动中心参加实践活动. 11 : 00 时他在活动中心接到爸爸的电话,因急事要求他在 12 : 00 前回到家,他即刻按照来活动中心时的路线,以5千米 / 小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家 x (小时)后,到达离家 y (千米)的地方,图中折线 OABCD 表示 y x 之间的函数关系.

(1)活动中心与小宇家相距     千米,小宇在活动中心活动时间为   小时,他从活动中心返家时,步行用了      小时;

(2)求线段 BC 所表示的 y (千米)与 x (小时)之间的函数关系式(不必写出 x 所表示的范围);

(3)根据上述情况(不考虑其他因素),请判断小宇是否能在 12 : 00 前回到家,并说明理由.

来源:2017年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早 1 2 小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:

(1)请直接写出快、慢两车的速度;

(2)求快车返回过程中y(千米)与x(小时)的函数关系式;

(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.

来源:2016年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积 S(单位: m 2)与工作时间 t(单位: h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是(  )

A.

300 m 2

B.

150 m 2

C.

330 m 2

D.

450 m 2

来源:2016年黑龙江省哈尔滨市中考数学试卷
  • 题型:未知
  • 难度:未知

端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.

(1)肉粽和蜜枣粽的进货单价分别是多少元?

(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?

来源:2020年广东省深圳市中考数学试卷
  • 题型:未知
  • 难度:未知

天水市某商店准备购进两种商品,种商品每件的进价比种商品每件的进价多20元,用2000元购进种商品和用1200元购进种商品的数量相同.商店将种商品每件的售价定为80元,种商品每件的售价定为45元.

(1)种商品每件的进价和种商品每件的进价各是多少元?

(2)商店计划用不超过1560元的资金购进两种商品共40件,其中种商品的数量不低于种商品数量的一半,该商店有几种进货方案?

(3)“五一”期间,商店开展优惠促销活动,决定对每件种商品售价优惠元,种商品售价不变,在(2)的条件下,请设计出的不同取值范围内,销售这40件商品获得总利润最大的进货方案.

来源:2020年甘肃省天水市中考数学试卷
  • 题型:未知
  • 难度:未知

黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.

(1)甲、乙两种商品的进货单价分别是多少?

(2)设甲商品的销售单价为(单位:元件),在销售过程中发现:当时,甲商品的日销售量(单位:件)与销售单价之间存在一次函数关系,之间的部分数值对应关系如表:

销售单价(元件)

11

19

日销售量(件

18

2

请写出当时,之间的函数关系式.

(3)在(2)的条件下,设甲商品的日销售利润为元,当甲商品的销售单价(元件)定为多少时,日销售利润最大?最大利润是多少?

来源:2020年贵州省黔东南州中考数学试卷
  • 题型:未知
  • 难度:未知

某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费 y (元 ) 是用水量 x (立方米)的函数,其图象如图所示.

(1)若某月用水量为18立方米,则应交水费多少元?

(2)求当 x > 18 时, y 关于 x 的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题