从 、2、3、 这四个数中任取两数,分别记为 、 ,那么点 在函数 图象上的概率是
A. B. C. D.
如图,已知抛物线 与反比例函数 的图象相交于点 ,且 点的横坐标为3,抛物线与 轴交于点 , 是抛物线 的顶点, 点是 轴上一动点,当 最小时, 点的坐标为 .
已知, 、 、 、 是反比例函数 图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是 (用含 的代数式表示).
设双曲线 与直线 交于 , 两点(点 在第三象限),将双曲线在第一象限的一支沿射线 的方向平移,使其经过点 ,将双曲线在第三象限的一支沿射线 的方向平移,使其经过点 ,平移后的两条曲线相交于 , 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”, 为双曲线的“眸径“,当双曲线 的眸径为6时, 的值为 .
如图,在平面直角坐标系 中,函数 的图象经过菱形 的顶点 和边 的中点 ,若菱形 的边长为3,则 的值为 .
如图, 是反比例函数 在第一象限内的图象上一点,以 为顶点作等边 ,使 落在 轴上,则 的面积为
A. B. C. D.
如图, 是反比例函数 在第一象限内的图象上一点,以 为顶点作等边 ,使 落在 轴上,则 的面积为
A. B. C. D.
如图,在平面直角坐标系中,矩形 的顶点 、 分别在 轴的负半轴、 轴的正半轴上,点 在第二象限.将矩形 绕点 顺时针旋转,使点 落在 轴上,得到矩形 , 与 相交于点 .若经过点 的反比例函数 的图象交 于点 , , ,则 的长为 .
规定:如果关于 的一元二次方程 有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论:
①方程 是倍根方程;
②若关于 的方程 是倍根方程,则 ;
③若关于 的方程 是倍根方程,则抛物线 与 轴的公共点的坐标是 和 ;
④若点 在反比例函数 的图象上,则关于 的方程 是倍根方程.
上述结论中正确的有
A.①②B.③④C.②③D.②④
已知:如图,在平面直角坐标系 中,等边 的边长为6,点 在边 上,点 在边 上,且 ,反比例函数 的图象恰好经过点 和点 ,则 的值为
A. B. C. D.
如图, ,反比例函数 的图象过点 ,反比例函数 的图象过点 ,且 轴.
(1)求 和 的值;
(2)过点 作 ,交 轴于点 ,交 轴于点 ,交双曲线 于另一点 ,求 的面积.
试题篮
()