如图,直线 与反比例函数 的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.
(1)m= ,n= ;若 是反比例函数图象上两点,且 ,则y1 y2(填“<”或“=”或“>”);
(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.
如图,一次函数 的图象与反比例函数 的图象在第二象限交于点 .与 轴交于点 .过点 作 轴于点 , 的面积是3.
(1)求一次函数和反比例函数的解析式;
(2)若直线 与 轴交于点 ,求 的面积.
设 P( x,0)是 x轴上的一个动点,它与原点的距离为 y 1.
(1)求 y 1关于 x的函数解析式,并画出这个函数的图象;
(2)若反比例函数 y 2= 的图象与函数 y 1的图象相交于点 A,且点 A的纵坐标为2.
①求 k的值;
②结合图象,当 y 1> y 2时,写出 x的取值范围.
如图, ,反比例函数 的图象过点 ,反比例函数 的图象过点 ,且 轴.
(1)求 和 的值;
(2)过点 作 ,交 轴于点 ,交 轴于点 ,交双曲线 于另一点 ,求 的面积.
如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数 的图象上.
(1)求反比例函数 的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP= S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
如图,已知反比例函数 的图象经过点 , 轴,且 的面积为2.
(1)求 和 的值;
(2)若点 也在反比例函数 的图象上,当 时,求函数值 的取值范围.
阅读理解:
材料一:若三个非零实数 , , 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数 , , 构成"和谐三数组".
材料二:若关于 的一元二次方程 的两根分别为 , ,则有 , .
问题解决:
(1)请你写出三个能构成"和谐三数组"的实数 ;
(2)若 , 是关于 的方程 , , 均不为 的两根, 是关于 的方程 , 均不为 的解.求证: , , 可以构成"和谐三数组";
(3)若 , , 三个点均在反比例函数 的图象上,且三点的纵坐标恰好构成"和谐三数组",求实数 的值.
如图,在平面直角坐标系中, 的斜边 在 轴的正半轴上, ,且 , ,反比例函数 的图象经过点 .
(1)求反比例函数的表达式;
(2)若 与 关于直线 对称,一次函数 的图象过点 、 ,求一次函数的表达式.
如图,在平面直角坐标系中, 为坐标原点,点 , 在函数 的图象上(点 的横坐标大于点 的横坐标),点 的坐标为 ,过点 作 轴于点 ,过点 作 轴于点 ,连接 , .
(1)求 的值.
(2)若 为 中点,求四边形 的面积.
如图,在平面直角坐标系中,菱形 的边 在 轴上,反比例函数 的图象经过菱形对角线的交点 ,且与边 交于点 ,点 的坐标为 .
(1)求反比例函数的表达式;
(2)求点 的坐标.
如图,直线 与 , 轴分别交于点 , ,与反比例函数 图象交于点 , ,过点 作 轴的垂线交该反比例函数图象于点 .
(1)求点 的坐标.
(2)若 .
①求 的值.
②试判断点 与点 是否关于原点 成中心对称?并说明理由.
如图,点 和点 是反比例函数 图象上的两点,一次函数 的图象经过点 ,与 轴交于点 ,与 轴交于点 ,过点 作 轴,垂足为 ,连接 , .已知 与 的面积满足 .
(1) , ;
(2)已知点 在线段 上,当 时,求点 的坐标.
如图1,一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于点 .
(1) ; ;
(2)点 是线段 上的动点(与点 、 不重合),过点 且平行于 轴的直线 交这个反比例函数的图象于点 ,求 面积的最大值;
(3)将(2)中面积取得最大值的 沿射线 方向平移一定的距离,得到△ ,若点 的对应点 落在该反比例函数图象上(如图 ,则点 的坐标是 .
如图,已知平行四边形 中,点 为坐标原点,点 , ,函数 的图象经过点 .
(1)求 的值及直线 的函数表达式:
(2)求四边形 的周长.
试题篮
()