如图,在平面直角坐标系 中,一次函数 的图象与反比例函数 的图象相交于点 ,与 轴相交于点 .
(1)求反比例函数的表达式;
(2)过点 的直线交反比例函数的图象于另一点 ,交 轴正半轴于点 ,当 是以 为底的等腰三角形时,求直线 的函数表达式及点 的坐标.
如图,在平面直角坐标系中, 点的坐标为 , 轴于点 , ,反比例函数 的图象的一支分别交 、 于点 、 .延长 交反比例函数的图象的另一支于点 .已知点 的纵坐标为 .
(1)求反比例函数的解析式;
(2)求直线 的解析式;
(3)求 .
如图,一次函数 的图象与反比例函数 的图象交于 , 两点,过 点作 轴的垂线,垂足为 , 面积为1.
(1)求反比例函数的解析式;
(2)在 轴上求一点 ,使 的值最小,并求出其最小值和 点坐标.
如图,一次函数 与反比例函数 的图象交于
点 和 ,与 轴交于点 .
(1)求一次函数和反比例函数的解析式;
(2)在 轴上取一点 ,当 的面积为3时,求点 的坐标;
(3)将直线 向下平移2个单位后得到直线 ,当函数值 时,求 的取值范围.
在平面直角坐标系中的位置如图所示,直线 与双曲线 在第一象限的图象相交于 、 两点,且 , 是 的中点.
(1)连接 ,若 的面积为 , 的面积为 ,则 (直接填“ ”“ ”或“ ” ;
(2)求 和 的解析式;
(3)请直接写出当 取何值时 .
如图,已知反比例函数 的图象与直线 相交于点 , .
(1)求出直线 的表达式;
(2)在 轴上有一点 使得 的面积为18,求出点 的坐标.
如图,一次函数 的图象与反比例函数 为常数, 的图象交于 、 两点,过点 作 轴,垂足为 ,连接 ,已知 , , .
(1)求一次函数和反比例函数的解析式.
(2)结合图象直接写出:当 时, 的取值范围.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
在直角坐标系中,设函数 是常数, , 与函数 是常数, 的图象交于点 ,点 关于 轴的对称点为点 .
(1)若点 的坐标为 ,
①求 , 的值;
②当 时,写出 的取值范围;
(2)若点 在函数 是常数, 的图象上,求 的值.
如图,一次函数 的图象与反比例函数 的图象交于点 、 ,与 轴交于点 ,若 ,且 .
(1)求反比例函数与一次函数的表达式;
(2)请直接写出不等式 的解集.
如图,一次函数 的图象与反比例函数 的图象交于 A(﹣1, n), B(3,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)点 P在 x轴上,且满足△ ABP的面积等于4,请直接写出点 P的坐标.
如图,在直角坐标系中,直线 与双曲线 分别相交于第二、四象限内的 , 两点,与 轴相交于 点.已知 , .
(1)求 , 对应的函数表达式;
(2)求 的面积;
(3)直接写出当 时,不等式 的解集.
试题篮
()