如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,在平面直角坐标系中,抛物线 经过 , .直线 交 轴于点 , 是直线 下方抛物线上的一个动点.过点 作 ,垂足为 , 轴,交 于点 .
(1)求抛物线的函数表达式;
(2)当 的周长取得最大值时,求点 的坐标和 周长的最大值;
(3)把抛物线 平移,使得新抛物线的顶点为(2)中求得的点 . 是新抛物线上一点, 是新抛物线对称轴上一点,直接写出所有使得以点 , , , 为顶点的四边形是平行四边形的点 的坐标,并把求其中一个点 的坐标的过程写出来.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,二次函数 为常数)的图象的对称轴为直线 .
(1)求 的值.
(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知二次函数 .
(1)求二次函数图象的顶点坐标;
(2)当 时,函数的最大值和最小值分别为多少?
(3)当 时,函数的最大值为 ,最小值为 ,若 ,求 的值.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知在平面直角坐标系 中,点 的坐标为 , 是抛物线 对称轴上的一个动点.小明经探究发现:当 的值确定时,抛物线的对称轴上能使 为直角三角形的点 的个数也随之确定,若抛物线 的对称轴上存在3个不同的点 ,使 为直角三角形,则 的值是 .
已知抛物线 与 轴的交点为 和 ,点 , , , 是抛物线上不同于 , 的两个点,记△ 的面积为 ,△ 的面积为 ,有下列结论:①当 时, ;②当 时, ;③当 时, ;④当 时, .其中正确结论的个数是
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
已知 和 均是以 为自变量的函数,当 时,函数值分别是 和 ,若存在实数 ,使得 ,则称函数 和 具有性质 .以下函数 和 具有性质 的是
A. |
和 |
B. |
和 |
C. |
和 |
D. |
和 |
在"探索函数 的系数 , , 与图象的关系"活动中,老师给出了直角坐标系中的四个点: , , , .同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数表达式各不相同,其中 的值最大为
A. |
|
B. |
|
C. |
|
D. |
|
已知抛物线 经过点 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小.设 是抛物线 与 轴的交点(交点也称公共点)的横坐标, .
(1)求 、 的值;
(2)求证: ;
(3)以下结论: , , ,你认为哪个正确?请证明你认为正确的那个结论.
已知抛物线 .
(1)求抛物线的对称轴;
(2)把抛物线沿 轴向下平移 个单位,若抛物线的顶点落在 轴上,求 的值;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
已知抛物线 , 为常数, 经过点 ,顶点为 .
(Ⅰ)当 时,求该抛物线的顶点坐标;
(Ⅱ)当 时,点 ,若 ,求该抛物线的解析式;
(Ⅲ)当 时,点 ,过点 作直线 平行于 轴, 是 轴上的动点, 是直线 上的动点.当 为何值时, 的最小值为 ,并求此时点 , 的坐标.
试题篮
()