优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 二次函数图象上点的坐标特征
初中数学

设抛物线 y = x 2 + ( a + 1 ) x + a ,其中 a 为实数.

(1)若抛物线经过点 ( - 1 , m ) ,则 m =   

(2)将抛物线 y = x 2 + ( a + 1 ) x + a 向上平移2个单位,所得抛物线顶点的纵坐标的最大值是  

来源:2021年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 + 2 x + 8 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C

(1)求点 B C 的坐标;

(2)设点 C ' 与点 C 关于该抛物线的对称轴对称.在 y 轴上是否存在点 P ,使 ΔPCC ' ΔPOB 相似,且 PC PO 是对应边?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

综合与探究

如图,抛物线 y = 1 2 x 2 + 2 x 6 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ,连接 AC BC

(1)求 A B C 三点的坐标并直接写出直线 AC BC 的函数表达式.

(2)点 P 是直线 AC 下方抛物线上的一个动点,过点 P BC 的平行线 l ,交线段 AC 于点 D

①试探究:在直线 l 上是否存在点 E ,使得以点 D C B E 为顶点的四边形为菱形,若存在,求出点 E 的坐标,若不存在,请说明理由;

②设抛物线的对称轴与直线 l 交于点 M ,与直线 AC 交于点 N .当 S ΔDMN = S ΔAOC 时,请直接写出 DM 的长.

来源:2021年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 bx + c ( a 0 ) 的图象经过第一象限的点 ( 1 , b ) ,则一次函数 y = bx ac 的图象不经过 (    )

A.

第一象限

B.

第二象限

C.

第三象限

D.

第四象限

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 bx + c ( a 0 ) 的图象经过第一象限的点 ( 1 , b ) ,则一次函数 y = bx ac 的图象不经过 (    )

A.第一象限B.第二象限C.第三象限D.第四象限

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 - ( m + 1 ) x + m ( m 是实数,且 - 1 < m < 0 ) 的图象与 x 轴交于 A B 两点(点 A 在点 B 的左侧),其对称轴与 x 轴交于点 C .已知点 D 位于第一象限,且在对称轴上, OD BD ,点 E x 轴的正半轴上, OC = EC ,连接 ED 并延长交 y 轴于点 F ,连接 AF

(1)求 A B C 三点的坐标(用数字或含 m 的式子表示);

(2)已知点 Q 在抛物线的对称轴上,当 ΔAFQ 的周长的最小值等于 12 5 时,求 m 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ( a 0 ) 的图象如图所示,点 P x 轴的正半轴上,且 OP = 1 ,设 M = ac ( a + b + c ) ,则 M 的取值范围为 (    )

A.

M < - 1

B.

- 1 < M < 0

C.

M < 0

D.

M > 0

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为"雁点".例如 ( 1 , 1 ) ( 2021 , 2021 ) 都是"雁点".

(1)求函数 y = 4 x 图象上的"雁点"坐标;

(2)若抛物线 y = a x 2 + 5 x + c 上有且只有一个"雁点" E ,该抛物线与 x 轴交于 M N 两点(点 M 在点 N 的左侧).当 a > 1 时.

①求 c 的取值范围;

②求 EMN 的度数;

(3)如图,抛物线 y = - x 2 + 2 x + 3 x 轴交于 A B 两点(点 A 在点 B 的左侧), P 是抛物线 y = - x 2 + 2 x + 3 上一点,连接 BP ,以点 P 为直角顶点,构造等腰 Rt Δ BPC ,是否存在点 P ,使点 C 恰好为"雁点"?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2021年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数), a + b + c = 0 .下列四个结论:

①若抛物线经过点 ( - 3 , 0 ) ,则 b = 2 a

②若 b = c ,则方程 c x 2 + bx + a = 0 一定有根 x = - 2

③抛物线与 x 轴一定有两个不同的公共点;

④点 A ( x 1 y 1 ) B ( x 2 y 2 ) 在抛物线上,若 0 < a < c ,则当 x 1 < x 2 < 1 时, y 1 > y 2

其中正确的是   (填写序号).

来源:2021年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c x 轴只有一个公共点.

(1)若抛物线过点 P ( 0 , 1 ) ,求 a + b 的最小值;

(2)已知点 P 1 ( - 2 , 1 ) P 2 ( 2 , - 1 ) P 3 ( 2 , 1 ) 中恰有两点在抛物线上.

①求抛物线的解析式;

②设直线 l : y = kx + 1 与抛物线交于 M N 两点,点 A 在直线 y = - 1 上,且 MAN = 90 ° ,过点 A 且与 x 轴垂直的直线分别交抛物线和 l 于点 B C .求证: ΔMAB ΔMBC 的面积相等.

来源:2021年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

A (﹣ 4 3 B 0 k 在二次函数 y =﹣( x + 2 2 + h 的图象上,则 k   

来源:2020年甘肃省兰州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + 1 经过点 ( 1 , - 2 ) ( - 2 , 13 )

(1)求 a b 的值.

(2)若 ( 5 , y 1 ) ( m , y 2 ) 是抛物线上不同的两点,且 y 2 = 12 - y 1 ,求 m 的值.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ( - 3 , y 1 ) ( - 2 , y 2 ) ( 1 , y 3 ) 是抛物线 y = - 3 x 2 - 12 x + m 上的点,则 (    )

A. y 3 < y 2 < y 1 B. y 3 < y 1 < y 2 C. y 2 < y 3 < y 1 D. y 1 < y 3 < y 2

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为坐标原点,抛物线 y = x 2 - 2 x - 3 y 轴交于点 A ,与 x 轴正半轴交于点 B ,连接 AB ,将 Rt Δ OAB 向右上方平移,得到 Rt O ' A ' B ' ,且点 O ' A ' 落在抛物线的对称轴上,点 B ' 落在抛物线上,则直线 A ' B ' 的表达式为 (    )

A. y = x B. y = x + 1 C. y = x + 1 2 D. y = x + 2

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,已知抛物线 y = x 2 2 ( k 1 ) x + k 2 5 2 k ( k 为常数).

(1)若抛物线经过点 ( 1 , k 2 ) ,求 k 的值;

(2)若抛物线经过点 ( 2 k , y 1 ) 和点 ( 2 , y 2 ) ,且 y 1 > y 2 ,求 k 的取值范围;

(3)若将抛物线向右平移1个单位长度得到新抛物线,当 1 x 2 时,新抛物线对应的函数有最小值 3 2 ,求 k 的值.

来源:2018年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学二次函数图象上点的坐标特征试题