已知二次函数 (其中 是自变量),当 时, 随 的增大而增大,且 时, 的最大值为9,则 的值为
A.1或 B. 或 C. D.1
如图1,在平面直角坐标系中,直线 分别与 轴、 轴交于点 , , ,等边 的顶点 与原点 重合, 边落在 轴正半轴上,点 恰好落在线段 上,将等边 从图1的位置沿 轴正方向以每秒1个单位长度的速度平移,边 , 分别与线段 交于点 , (如图2所示),设 平移的时间为 .
(1)等边 的边长为 ;
(2)在运动过程中,当 时, 垂直平分 ;
(3)若在 开始平移的同时.点 从 的顶点 出发.以每秒2个单位长度的速度沿折线 运动.当点 运动到 时即停止运动. 也随之停止平移.
①当点 在线段 上运动时,若 与 相似.求 的值;
②当点 在线段 上运动时,设 ,求 与 的函数关系式,并求出 的最大值及此时点 的坐标.
某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是 个.
已知 a≥2, m 2﹣2 am+2=0, n 2﹣2 an+2=0, m≠ n,则( m﹣1) 2+( n﹣1) 2的最小值是( )
A. |
6 |
B. |
3 |
C. |
﹣3 |
D. |
0 |
已知二次函数 ,当 时 ,则下列说法正确的是
A.当 时, 有最小值B.当 时, 有最大值
C.当 时, 无最小值D.当 时, 有最大值
如图是函数 的图象,直线 轴且过点 ,将该函数在直线 上方的图象沿直线 向下翻折,在直线 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则 的取值范围是
A. |
|
B. |
|
C. |
|
D. |
或 |
如图,在正方形中,,为对角线上一动点,连接,,过点作,交直线于点.点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为,点的运动时间为秒.
(1)求证:;
(2)求与之间关系的函数表达式,并写出自变量的取值范围;
(3)求面积的最大值.
如图,在矩形 中, ,点 在边 上,连接 ,以 为边向右上方作正方形 ,作 ,垂足为 ,连接 .
(1)求证: ;
(2)当 为何值时, 的面积最大?
试题篮
()