优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

平面直角坐标系 xOy 中,已知抛物线 y = x 2 + bx + c 经过 ( - 1 , m 2 + 2 m + 1 ) ( 0 , m 2 + 2 m + 2 ) 两点,其中 m 为常数.

(1)求 b 的值,并用含 m 的代数式表示 c

(2)若抛物线 y = x 2 + bx + c x 轴有公共点,求 m 的值;

(3)设 ( a , y 1 ) ( a + 2 , y 2 ) 是抛物线 y = x 2 + bx + c 上的两点,请比较 y 2 - y 1 与0的大小,并说明理由.

来源:2016年江苏省南通市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = a x 2 + bx 经过两点 A ( - 1 , 1 ) B ( 2 , 2 ) .过点 B BC / / x 轴,交抛物线于点 C ,交 y 轴于点 D

(1)求此抛物线对应的函数表达式及点 C 的坐标;

(2)若抛物线上存在点 M ,使得 ΔBCM 的面积为 7 2 ,求出点 M 的坐标;

(3)连接 OA OB OC AC ,在坐标平面内,求使得 ΔAOC ΔOBN 相似(边 OA 与边 OB 对应)的点 N 的坐标.

来源:2016年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = - 1 4 x 2 + bx + c 的图象与坐标轴交于 A B C 三点,其中点 A 的坐标为 ( 0 , 8 ) ,点 B 的坐标为 ( - 4 , 0 )

(1)求该二次函数的表达式及点 C 的坐标;

(2)点 D 的坐标为 ( 0 , 4 ) ,点 F 为该二次函数在第一象限内图象上的动点,连接 CD CF ,以 CD CF 为邻边作平行四边形 CDEF ,设平行四边形 CDEF 的面积为 S

①求 S 的最大值;

②在点 F 的运动过程中,当点 E 落在该二次函数图象上时,请直接写出此时 S 的值.

来源:2016年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,一次函数 y = x 与二次函数 y = x 2 + bx 的图象相交于 O A 两点,点 A ( 3 , 3 ) ,点 M 为抛物线的顶点.

(1)求二次函数的表达式;

(2)长度为 2 2 的线段 PQ 在线段 OA (不包括端点)上滑动,分别过点 P Q x 轴的垂线交抛物线于点 P 1 Q 1 ,求四边形 PQ Q 1 P 1 面积的最大值;

(3)直线 OA 上是否存在点 E ,使得点 E 关于直线 MA 的对称点 F 满足 S ΔAOF = S ΔAOM ?若存在,求出点 E 的坐标;若不存在,请说明理由.

来源:2016年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx + c y x 的部分对应值如表:

x

1

0

2

4

y

1

2

2

6

下列结论错误的是 (    )

A.该函数有最大值

B.该函数图象的对称轴为直线 x = 1

C.当 x > 2 时,函数值 y x 增大而减小

D.方程 a x 2 + bx + c = 0 有一个根大于3

来源:2018年辽宁省朝阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,抛物线的顶点 A 的坐标为 ( 1 , 4 ) ,抛物线与 x 轴相交于 B C 两点,与 y 轴交于点 E ( 0 , 3 )

(1)求抛物线的表达式;

(2)已知点 F ( 0 , 3 ) ,在抛物线的对称轴上是否存在一点 G ,使得 EG + FG 最小,如果存在,求出点 G 的坐标;如果不存在,请说明理由.

(3)如图2,连接 AB ,若点 P 是线段 OE 上的一动点,过点 P 作线段 AB 的垂线,分别与线段 AB 、抛物线相交于点 M N (点 M N 都在抛物线对称轴的右侧),当 MN 最大时,求 ΔPON 的面积.

来源:2018年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知抛物线 y = x 2 + bx + c x 轴交于 A ( 1 , 0 ) B ( 3 , 0 ) 两点,与 y 轴交于 C 点,点 P 是抛物线上在第一象限内的一个动点,且点 P 的横坐标为 t

(1)求抛物线的表达式;

(2)设抛物线的对称轴为 l l x 轴的交点为 D .在直线 l 上是否存在点 M ,使得四边形 CDPM 是平行四边形?若存在,求出点 M 的坐标;若不存在,请说明理由.

(3)如图2,连接 BC PB PC ,设 ΔPBC 的面积为 S

①求 S 关于 t 的函数表达式;

②求 P 点到直线 BC 的距离的最大值,并求出此时点 P 的坐标.

来源:2018年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象过点 O ( 0 , 0 ) A ( 8 , 4 ) ,与 x 轴交于另一点 B ,且对称轴是直线 x = 3

(1)求该二次函数的解析式;

(2)若 M OB 上的一点,作 MN / / AB OA N ,当 ΔANM 面积最大时,求 M 的坐标;

(3) P x 轴上的点,过 P PQ x 轴与抛物线交于 Q .过 A AC x 轴于 C ,当以 O P Q 为顶点的三角形与以 O A C 为顶点的三角形相似时,求 P 点的坐标.

来源:2018年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( 1 , 0 ) B ( 1 , 1 ) 两点.

(1)求该抛物线的解析式;

(2)阅读理解:

在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 b 1 为常数,且 k 1 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 b 2 为常数,且 k 2 0 ) ,若 l 1 l 2 ,则 k 1 · k 2 = 1

解决问题:

①若直线 y = 3 x 1 与直线 y = mx + 2 互相垂直,求 m 的值;

②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A B 重合),求点 M 到直线 AB 的距离的最大值.

来源:2017年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如 ( 3 , 5 ) ( 5 , 3 ) 是一对“互换点”.

(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?

(2) M N 是一对“互换点”,若点 M 的坐标为 ( m , n ) ,求直线 MN 的表达式(用含 m n 的代数式表示);

(3)在抛物线 y = x 2 + bx + c 的图象上有一对“互换点” A B ,其中点 A 在反比例函数 y = 2 x 的图象上,直线 AB 经过点 P ( 1 2 1 2 ) ,求此抛物线的表达式.

来源:2017年湖南省益阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = 3 3 x 2 + bx + 3 x 轴交于 A B 两点,与 y 轴交于点 C ,其中点 A 的坐标为 ( 3 , 0 )

(1)求 b 的值及点 B 的坐标;

(2)试判断 ΔABC 的形状,并说明理由;

(3)一动点 P 从点 A 出发,以每秒2个单位的速度向点 B 运动,同时动点 Q 从点 B 出发,以每秒1个单位的速度向点 C 运动(当点 P 运动到点 B 时,点 Q 随之停止运动),设运动时间为 t 秒,当 t 为何值时 ΔPBQ ΔABC 相似?

来源:2017年湖南省湘西州中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线的解析式为 y = 1 20 x 2 + bx + 5

(1)当自变量 x 2 时,函数值 y x 的增大而减少,求 b 的取值范围;

(2)如图,若抛物线的图象经过点 A ( 2 , 5 ) ,与 x 轴交于点 C ,抛物线的对称轴与 x 轴交于 B

①求抛物线的解析式;

②在抛物线上是否存在点 P ,使得 PAB = ABC ?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖南省湘潭市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔAOB 的顶点 A B 分别在 x 轴, y 轴上, BAO = 45 ° ,且 ΔAOB 的面积为8.

(1)直接写出 A B 两点的坐标;

(2)过点 A B 的抛物线 G x 轴的另一个交点为点 C

①若 ΔABC 是以 BC 为腰的等腰三角形,求此时抛物线的解析式;

②将抛物线 G 向下平移4个单位后,恰好与直线 AB 只有一个交点 N ,求点 N 的坐标.

来源:2017年湖南省衡阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 8 5 x + c x 轴交于 A B 两点,与 y 轴交于点 C ,且 A ( 2 , 0 ) C ( 0 , 4 ) ,直线 l : y = 1 2 x 4 x 轴交于点 D ,点 P 是抛物线 y = a x 2 + 8 5 x + c 上的一动点,过点 P PE x 轴,垂足为 E ,交直线 l 于点 F

(1)试求该抛物线表达式;

(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;

(3)如图(2),过点 P PH y 轴,垂足为 H ,连接 AC

①求证: ΔACD 是直角三角形;

②试问当 P 点横坐标为何值时,使得以点 P C H 为顶点的三角形与 ΔACD 相似?

来源:2017年湖南省郴州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线的对称轴是 y 轴,且点 ( 2 , 2 ) ( 1 , 5 4 ) 在抛物线上,点 P 是抛物线上不与顶点 N 重合的一动点,过 P PA x 轴于 A PC y 轴于 C ,延长 PC 交抛物线于 E ,设 M O 关于抛物线顶点 N 的对称点, D C 点关于 N 的对称点.

(1)求抛物线的解析式及顶点 N 的坐标;

(2)求证:四边形 PMDA 是平行四边形;

(3)求证: ΔDPE ΔPAM ,并求出当它们的相似比为 3 时的点 P 的坐标.

来源:2017年湖南省常德市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题