优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:82

如图,已知抛物线 y = a x 2 + bx + 1 经过 A ( 1 , 0 ) B ( 1 , 1 ) 两点.

(1)求该抛物线的解析式;

(2)阅读理解:

在同一平面直角坐标系中,直线 l 1 : y = k 1 x + b 1 ( k 1 b 1 为常数,且 k 1 0 ) ,直线 l 2 : y = k 2 x + b 2 ( k 2 b 2 为常数,且 k 2 0 ) ,若 l 1 l 2 ,则 k 1 · k 2 = 1

解决问题:

①若直线 y = 3 x 1 与直线 y = mx + 2 互相垂直,求 m 的值;

②抛物线上是否存在点 P ,使得 ΔPAB 是以 AB 为直角边的直角三角形?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3) M 是抛物线上一动点,且在直线 AB 的上方(不与 A B 重合),求点 M 到直线 AB 的距离的最大值.

登录免费查看答案和解析

如图,已知抛物线yax2bx1经过A(−1,0),B(1,1