已知二次函数 (其中 是自变量)的图象经过不同两点 , ,且该二次函数的图象与 轴有公共点,则 的值为
A. B.2C.3D.4
如图,抛物线 与 轴相交于 、 两点,与 轴相交于点 ,点 在抛物线上,且 . 与 轴相交于点 ,过点 的直线 平行于 轴,与拋物线相交于 , 两点,则线段 的长为
A. B. C. D.
矩形 的两条对称轴为坐标轴,点 的坐标为 ,一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点 重合,此时抛物线的函数表达式为 ,再次平移透明纸,使这个点与点 重合,则该抛物线的函数表达式变为
A. B. C. D.
已知二次函数 的 与 的部分对应值如表:
|
|
0 |
2 |
4 |
|
|
2 |
2 |
|
下列结论错误的是
A.该函数有最大值
B.该函数图象的对称轴为直线
C.当 时,函数值 随 增大而减小
D.方程 有一个根大于3
已知不等式 的解集为 ,则下列结论正确的个数是
(1) ;
(2)当 时,函数 的图象与 轴没有公共点;
(3)当 时,抛物线 的顶点在直线 的上方;
(4)如果 且 ,则 的取值范围是 .
A.1B.2C.3D.4
在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如 与 是一对“互换点”.
(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
(2) 、 是一对“互换点”,若点 的坐标为 ,求直线 的表达式(用含 、 的代数式表示);
(3)在抛物线 的图象上有一对“互换点” 、 ,其中点 在反比例函数 的图象上,直线 经过点 , ,求此抛物线的表达式.
在平面直角坐标系中,点 为坐标原点,抛物线 与 轴交于点 ,与 轴正半轴交于点 ,连接 ,将 向右上方平移,得到 △ ,且点 , 落在抛物线的对称轴上,点 落在抛物线上,则直线 的表达式为
A. B. C. D.
如图, 的顶点 、 分别在 轴, 轴上, ,且 的面积为8.
(1)直接写出 、 两点的坐标;
(2)过点 、 的抛物线 与 轴的另一个交点为点 .
①若 是以 为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线 向下平移4个单位后,恰好与直线 只有一个交点 ,求点 的坐标.
如图所示,抛物线 的顶点为 ,与 轴的交点 在点 和 之间,以下结论:
① ;② ;③ ;④
其中正确的有 个.
A.1B.2C.3D.4
关于抛物线 ,给出下列结论:
①当 时,抛物线与直线 没有交点;
②若抛物线与 轴有两个交点,则其中一定有一个交点在点 与 之间;
③若抛物线的顶点在点 , , 围成的三角形区域内(包括边界),则 .
其中正确结论的序号是 .
已知二次函数 的图象如图所示,有下列结论:① ;② ;③ ;④不等式 的解集为 ,正确的结论个数是
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
如图,在平面直角坐标系中,二次函数 图象的顶点是 ,与 轴交于 , 两点,与 轴交于点 .点 的坐标是 .
(1)求 , 两点的坐标,并根据图象直接写出当 时 的取值范围.
(2)平移该二次函数的图象,使点 恰好落在点 的位置上,求平移后图象所对应的二次函数的表达式.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
试题篮
()