优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 三角形内角和定理 / 解答题
初中数学

如图,在 O 中,点 P AB ̂ 的中点,弦 AD PC 互相垂直,垂足为 M BC 分别与 AD PD 相交于点 E N ,连接 BD MN

(1)求证: N BE 的中点.

(2)若 O 的半径为8, AB ̂ 的度数为 90 ° ,求线段 MN 的长.

来源:2020年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 ΔABC AB = AC D 为直线 BC 上一点, E 为直线 AC 上一点, AD = AE ,设 BAD = α CDE = β

(1)如图,若点 D 在线段 BC 上,点 E 在线段 AC 上.

①如果 ABC = 60 ° ADE = 70 ° ,那么 α =    ° β =    °

②求 α β 之间的关系式.

(2)是否存在不同于以上②中的 α β 之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 题型:未知
  • 难度:未知

定义:有一组对角互余的四边形叫做对余四边形.

理解:

(1)若四边形 ABCD 是对余四边形,则 A C 的度数之和为        

证明:

(2)如图1, MN O 的直径,点 A B C O 上, AM CN 相交于点 D

求证:四边形 ABCD 是对余四边形;

探究:

(3)如图2,在对余四边形 ABCD 中, AB = BC ABC = 60 ° ,探究线段 AD CD BD 之间有怎样的数量关系?写出猜想,并说明理由.

来源:2020年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点在一条直线上,交于点,求证:

来源:2019年湖北省武汉市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 D E 分别为 ΔABC 的边 AB BC 上两点,点 A C E D 上,点 B D E 上. F BD ̂ 上一点,连接 FE 并延长交 AC 的延长线于点 N ,交 AB 于点 M

(1)若 EBD α ,请将 CAD 用含 α 的代数式表示;

(2)若 EM = MB ,请说明当 CAD 为多少度时,直线 EF D 的切线;

(3)在(2)的条件下,若 AD = 3 ,求 MN MF 的值.

来源:2018年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的直径,上一点,过点,交的延长线于,交于点的中点,连接

(1)求证:的切线.

(2)若,求证:

来源:2019年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,的顶点分别落在直线上,于点平分.若,求的度数.

来源:2018年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 E BC 边上, AE = AB ,将线段 AC A 点旋转到 AF 的位置,使得 CAF = BAE ,连接 EF EF AC 交于点 G

(1)求证: EF = BC

(2)若 ABC = 65 ° ACB = 28 ° ,求 FGC 的度数.

来源:2019年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的角平分线,在 AB 上取点 D ,使 DB = DE

(1)求证: DE / / BC

(2)若 A = 65 ° AED = 45 ° ,求 EBC 的度数.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

来源:2020年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

如果三角形的两个内角 α β 满足 2 α + β = 90 ° ,那么我们称这样的三角形为“准互余三角形”.

(1)若 ΔABC 是“准互余三角形”, C > 90 ° A = 60 ° ,则 B =    °

(2)如图①,在 Rt Δ ABC 中, ACB = 90 ° AC = 4 BC = 5 .若 AD BAC 的平分线,不难证明 ΔABD 是“准互余三角形”.试问在边 BC 上是否存在点 E (异于点 D ) ,使得 ΔABE 也是“准互余三角形”?若存在,请求出 BE 的长;若不存在,请说明理由.

(3)如图②,在四边形 ABCD 中, AB = 7 CD = 12 BD CD ABD = 2 BCD ,且 ΔABC 是“准互余三角形”,求对角线 AC 的长.

来源:2018年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

来源:2018年辽宁省大连市中考数学试卷
  • 题型:未知
  • 难度:未知

已知的直径,的切线,于点上一点,延长于点

(1)如图①,求的大小;

(2)如图②,当时,求的大小.

来源:2017年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学三角形内角和定理解答题