优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 全等三角形的判定与性质
初中数学

如图,在 ΔABC ΔDCE 中, AC = DE B = DCE = 90 ° ,点 A C D 依次在同一直线上,且 AB / / DE

(1)求证: ΔABC ΔDCE

(2)连结 AE ,当 BC = 5 AC = 12 时,求 AE 的长.

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB = AC AD = AE BD CE 相交于点 O

(1)求证: ΔABD ΔACE

(2)判断 ΔBOC 的形状,并说明理由.

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为 a ,小正方形地砖面积为 b ,依次连接四块大正方形地砖的中心得到正方形 ABCD .则正方形 ABCD 的面积为  .(用含 a b 的代数式表示)

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E ABCD 的边 CD 的中点,连结 AE 并延长,交 BC 的延长线于点 F

(1)若 AD 的长为2,求 CF 的长.

(2)若 BAF = 90 ° ,试添加一个条件,并写出 F 的度数.

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔBDE ΔFGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形 ABC 内.若求五边形 DECHF 的周长,则只需知道 (    )

A. ΔABC 的周长B. ΔAFH 的周长

C.四边形 FBGH 的周长D.四边形 ADEC 的周长

来源:2020年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 ABCD 与正方形 EFGH .连结 EG BD 相交于点 O BD HC 相交于点 P .若 GO = GP ,则 S 正方形 ABCD S 正方形 EFGH 的值是 (    )

A. 1 + 2 B. 2 + 2 C. 5 - 2 D. 15 4

来源:2020年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

来源:2020年浙江省嘉兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 OT Rt Δ ABO 斜边 AB 上的高线, AO = BO .以 O 为圆心, OT 为半径的圆交 OA 于点 C ,过点 C O 的切线 CD ,交 AB 于点 D .则下列结论中错误的是 (    )

A. DC = DT B. AD = 2 DT C. BD = BO D. 2 OC = 5 AC

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E BC 边上,连接 AE DAE 的平分线 AG CD 边交于点 G ,与 BC 的延长线交于点 F .设 CE EB = λ ( λ > 0 )

(1)若 AB = 2 λ = 1 ,求线段 CF 的长.

(2)连接 EG ,若 EG AF

①求证:点 G CD 边的中点.

②求 λ 的值.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图是一张矩形纸片,点 E AB 边上,把 ΔBCE 沿直线 CE 对折,使点 B 落在对角线 AC 上的点 F 处,连接 DF .若点 E F D 在同一条直线上, AE = 2 ,则 DF =    BE =   

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔADE ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到,且点 B 的对应点 D 恰好落在 BC 的延长线上, AD EC 相交于点 P

(1)求 BDE 的度数;

(2) F EC 延长线上的点,且 CDF = DAC

①判断 DF PF 的数量关系,并证明;

②求证: EP PF = PC CF

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 E F 分别在菱形 ABCD 的边 BC CD 上,且 BE = DF .求证: BAE = DAF

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题