如图,把 沿 翻折得 .
(1)连接 ,则 与 的位置关系是 .
(2)不在原图中添加字母和线段,只加一个条件使四边形 是平行四边形,写出添加的条件,并说明理由.
在菱形 中, ,点 是射线 上一动点,以 为边向右侧作等边 ,点 的位置随着点 的位置变化而变化.
(1)如图1,当点 在菱形 内部或边上时,连接 , 与 的数量关系是 , 与 的位置关系是 ;
(2)当点 在菱形 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);
(3)如图4,当点 在线段 的延长线上时,连接 ,若 , ,求四边形 的面积.
如图,在 中, 为 上一点,以点 为圆心, 为半径做圆,与 相切于点 ,过点 作 交 的延长线于点 ,且 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
如图,在 中, , ,点 , 分别在 , 上,且 .
(1)如图1,求证: ;
(2)如图2, 是 的中点,求证: ;
(3)如图3, , 分别是 , 的中点,若 , ,求 的面积.
如图,在正方形 中, ,点 , 分别在 , 上, , , 相交于点 .若图中阴影部分的面积与正方形 的面积之比为 ,则 的周长为 .
如图,把平面内一条数轴 绕原点 逆时针旋转角 得到另一条数轴 , 轴和 轴构成一个平面斜坐标系.规定:过点 作 轴的平行线,交 轴于点 ,过点 作 轴的平行线,交 轴于点 ,若点 在 轴上对应的实数为 ,点 在 轴上对应的实数为 ,则称有序实数对 为点 的斜坐标,在某平面斜坐标系中,已知 ,点 的斜坐标为 ,点 与点 关于 轴对称,则点 的斜坐标为 .
如图,等边三角形 边长是定值,点 是它的外心,过点 任意作一条直线分别交 , 于点 , .将 沿直线 折叠,得到△ ,若 , 分别交 于点 , ,连接 , ,则下列判断错误的是
A.
B.△ 的周长是一个定值
C.四边形 的面积是一个定值
D.四边形 的面积是一个定值
小敏思考解决如下问题:
原题:如图1,点 , 分别在菱形 的边 , 上, ,求证: .
(1)小敏进行探索,若将点 , 的位置特殊化;把 绕点 旋转得到 ,使 ,点 , 分别在边 , 上,如图2.此时她证明了 ,请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作 , ,垂足分别为 , .请你继续完成原题的证明.
(3)如果在原题中添加条件: , ,如图1,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
如图,在 中, , , 是 边上一点(点 与 , 不重合),连接 ,将线段 绕点 按逆时针方向旋转 得到线段 ,连接 交 于点 ,连接 .
(1)求证: ;
(2)当 时,求 的度数.
试题篮
()