优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 等腰三角形的性质
初中数学

为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星 ( A B C D E 是正五角星的五个顶点),则图中 A 的度数是   度.

来源:2021年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 的顶点均在正方形网格格点上.只用不带刻度的直尺,作出 ΔABC 的角平分线 BD (不写作法,保留作图痕迹).

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC B = 70 ° ,以点 C 为圆心, CA 长为半径作弧,交直线 BC 于点 P ,连结 AP ,则 BAP 的度数是   

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

已知 a b 是等腰三角形的两边长,且 a b 满足 2 a 3 b + 5 + ( 2 a + 3 b 13 ) 2 = 0 ,则此等腰三角形的周长为 (    )

A.

8

B.

6或8

C.

7

D.

7或8

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 40 ° ,点 D E 分别在边 AB AC 上, BD = BC = CE ,连结 CD BE

(1)若 ABC = 80 ° ,求 BDC ABE 的度数;

(2)写出 BEC BDC 之间的关系,并说明理由.

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC C = 70 ° ,分别以点 A B 为圆心,大于 1 2 AB 的长为半径作弧,两弧相交于 M N 两点,作直线 MN AC 于点 D ,连接 BD ,则 BDC =

   °

来源:2021年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图, BE ΔABC 的角平分线,在 AB 上取点 D ,使 DB = DE

(1)求证: DE / / BC

(2)若 A = 65 ° AED = 45 ° ,求 EBC 的度数.

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB BC CD DE 是四根长度均为 5 cm 的火柴棒,点 A C E 共线.若 AC = 6 cm CD BC ,则线段 CE 的长度是 (    )

A.

6 cm

B.

7 cm

C.

6 2 cm

D.

8 cm

来源:2021年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 为平行四边形,连接 AC ,且 AC = 2 AB .请用尺规完成基本作图:作出 BAC 的角平分线与 BC 交于点 E .连接 BD AE 于点 F ,交 AC 于点 O ,猜想线段 BF 和线段 DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)

来源:2021年重庆市中考数学试卷(B卷)
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A.

4 3

B.

3 4

C.

5 3

D.

5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC < BC .分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧交于 D E 两点,直线 DE BC 于点 F ,连接 AF .以点 A 为圆心, AF 为半径画弧,交 BC 延长线于点 H ,连接 AH .若 BC = 3 ,则 ΔAFH 的周长为   

来源:2021年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正五边形 ABCDE 中,连结 AC BD 交于点 F ,则 AFB 的度数为   

来源:2021年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A. 4 3 B. 3 4 C. 5 3 D. 5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的性质试题