如图,在 中, , 平分 交 于点 ,过点 和点 的圆,圆心 在线段 上, 交 于点 ,交 于点 .
(1)判断 与 的位置关系,并说明理由;
(2)若 , ,求 的长.
如图,在 中, ,以斜边 上的中线 为直径作 ,与 交于点 ,与 的另一个交点为 ,过 作 ,垂足为 .
(1)求证: 是 的切线;
(2)若 的直径为5, ,求 的长.
如图1, 是 的直径,直线 与 相切于点 ,直线 与 相切于点 ,点 (异于点 在 上,点 在 上,且 ,延长 与 相交于点 ,连接 并延长交 于点 .
(1)求证: 是 的切线;
(2)求证: ;
(3)如图2,连接 并延长与 分别相交于点 、 ,连接 .若 , ,求 .
如图1,在等腰三角形 中, , .如图2,在底边 上取一点 ,连接 ,使得 .如图3,将 沿着 所在直线折叠,使得点 落在点 处,连接 ,得到四边形 ,则 的长是
A.4B. C. D.
如图,已知 , 平分 交 于点 , 的中点为 , ,交 的延长线于点 ,交 于点 .
(1)求证: ;
(2)求证: .
小明将两个直角三角形纸片如图(1)那样拼放在同一平面上,抽象出如图(2)的平面图形, 与 恰好为对顶角, ,连接 , ,点 是线段 上一点.
探究发现:
(1)当点 为线段 的中点时,连接 (如图(2) ,小明经过探究,得到结论: .你认为此结论是否成立? .(填"是"或"否"
拓展延伸:
(2)将(1)中的条件与结论互换,即: ,则点 为线段 的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
问题解决:
(3)若 , ,求 的长.
如图,在 中, , , 的平分线交 于点 ,交 的延长线于点 , 于点 ,若 ,则 的周长为
A.16B.17C.24D.25
如图,在 中, , ,垂足为 , 平分 ,交 于点 ,交 于点 .若 , ,则 的长为
A. B. C. D.
(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在 中,点 在线段 上, , , , ,求 的长.
经过社团成员讨论发现,过点 作 ,交 的延长线于点 ,通过构造 就可以解决问题(如图 .
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形 中,对角线 与 相交于点 , , , , ,求 的长.
试题篮
()