优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 等腰三角形的判定与性质
初中数学

《蝶几图》是明朝人戈汕所作的一部组合家具的设计图 ( " "为"蜨",同"蝶" ) ,它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的"樣"和"隻"为"样"和"只" ) .图②为某蝶几设计图,其中 ΔABD ΔCBD 为"大三斜"组件 ( "一樣二隻"的大三斜组件为两个全等的等腰直角三角形),已知某人位于点 P 处,点 P 与点 A 关于直线 DQ 对称,连接 CP DP .若 ADQ = 24 ° ,则 DCP =   度.

来源:2021年湖南省株洲市中考数学试卷
  • 题型:未知
  • 难度:未知

如图①,直线 l 表示一条东西走向的笔直公路,四边形 ABCD 是一块边长为100米的正方形草地,点 A D 在直线 l 上,小明从点 A 出发,沿公路 l 向西走了若干米后到达点 E 处,然后转身沿射线 EB 方向走到点 F 处,接着又改变方向沿射线 FC 方向走到公路 l 上的点 G 处,最后沿公路 l 回到点 A 处.设 AE = x 米(其中 x > 0 ) GA = y 米,已知 y x 之间的函数关系如图②所示,

(1)求图②中线段 MN 所在直线的函数表达式;

(2)试问小明从起点 A 出发直至最后回到点 A 处,所走过的路径(即 ΔEFG ) 是否可以是一个等腰三角形?如果可以,求出相应 x 的值;如果不可以,说明理由.

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 E BC 上一点, F DE 的中点,且 BFC = 90 °

(1)当 E BC 中点时,求证: ΔBCF ΔDEC

(2)当 BE = 2 EC 时,求 CD BC 的值;

(3)设 CE = 1 BE = n ,作点 C 关于 DE 的对称点 C ' ,连接 FC ' AF ,若点 C ' AF 的距离是 2 10 5 ,求 n 的值.

来源:2016年浙江省丽水市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 2 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 A ( 3 , 0 ) ,且 M ( 1 , 8 3 ) 是抛物线上另一点.

(1)求 a b 的值;

(2)连接 AC ,设点 P y 轴上任一点,若以 P A C 三点为顶点的三角形是等腰三角形,求 P 点的坐标;

(3)若点 N x 轴正半轴上且在抛物线内的一动点(不与 O A 重合),过点 N NH / / AC 交抛物线的对称轴于 H 点.设 ON = t ΔONH 的面积为 S ,求 S t 之间的函数关系式.

来源:2017年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

(1)已知: ΔABC 是等腰三角形,其底边是 BC ,点 D 在线段 AB 上, E 是直线 BC 上一点,且 DEC = DCE ,若 A = 60 ° (如图①).求证: EB = AD

(2)若将(1)中的“点 D 在线段 AB 上”改为“点 D 在线段 AB 的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;

(3)若将(1)中的“若 A = 60 ° ”改为“若 A = 90 ° ”,其它条件不变,则 EB AD 的值是多少?(直接写出结论,不要求写解答过程)

来源:2016年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

折纸的思考.

(操作体验)

用一张矩形纸片折等边三角形.

第一步,对折矩形纸片 ABCD ( AB > BC ) (图①),使 AB DC 重合,得到折痕 EF ,把纸片展平(图②).

第二步,如图③,再一次折叠纸片,使点 C 落在 EF 上的 P 处,并使折痕经过点 B ,得到折痕 BG ,折出 PB PC ,得到 ΔPBC

(1)说明 ΔPBC 是等边三角形.

(数学思考)

(2)如图④,小明画出了图③的矩形 ABCD 和等边三角形 PBC .他发现,在矩形 ABCD 中把 ΔPBC 经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.

(3)已知矩形一边长为 3 cm ,另一边长为 acm ,对于每一个确定的 a 的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的 a 的取值范围.

(问题解决)

(4)用一张正方形铁片剪一个直角边长分别为 4 cm 1 cm 的直角三角形铁片,所需正方形铁片的边长的最小值为        cm

来源:2017年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 c 1 的顶点为 A ( 1 , 4 ) ,与 y 轴的交点为 D ( 0 , 3 )

(1)求 c 1 的解析式;

(2)若直线 l 1 : y = x + m c 1 仅有唯一的交点,求 m 的值;

(3)若抛物线 c 1 关于 y 轴对称的抛物线记作 c 2 ,平行于 x 轴的直线记作 l 2 : y = n .试结合图形回答:当 n 为何值时, l 2 c 1 c 2 共有:①两个交点;②三个交点;③四个交点;

(4)若 c 2 x 轴正半轴交点记作 B ,试在 x 轴上求点 P ,使 ΔPAB 为等腰三角形.

来源:2017年湖南省张家界市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线经过点,与轴交于另一点,顶点为

(1)求抛物线的解析式,并写出点的坐标;

(2)如图,点分别在线段点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;

(3)若点在抛物线上,且,试确定满足条件的点的个数.

来源:2019年湖北省十堰市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(b卷)
  • 题型:未知
  • 难度:未知

综合与探究

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx - 8 x 轴交于 A B 两点,与 y 轴交于点 C ,直线 l 经过坐标原点 O ,与抛物线的一个交点为 D ,与抛物线的对称轴交于点 E ,连接 CE ,已知点 A D 的坐标分别为 ( - 2 , 0 ) ( 6 , - 8 )

(1)求抛物线的函数表达式,并分别求出点 B 和点 E 的坐标;

(2)试探究抛物线上是否存在点 F ,使 ΔFOE ΔFCE ?若存在,请直接写出点 F 的坐标;若不存在,请说明理由;

(3)若点 P y 轴负半轴上的一个动点,设其坐标为 ( 0 , m ) ,直线 PB 与直线 l 交于点 Q ,试探究:当 m 为何值时, ΔOPQ 是等腰三角形.

来源:2016年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=BC,点E在边AB上,EF⊥AC于F.

(1)尺规作图:过点A作AD⊥BC于点D(保留作图痕迹,不写作法);
(2)求证:∠CAD=∠AEF;
(3)若∠ABC=45°,AD与EF交于点G,求证:EG=2AF.

  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质试题