如图, 中, , ,点 , 分别在 , 上, ,点 为 的延长线与 的延长线的交点.
(1)求证: ;
(2)判断 和 的数量关系,并说明理由;
(3)若 , ,求 的长.
经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段 是 的“和谐分割线”, 为等腰三角形, 和 相似, ,则 的度数为 .
如图,在 中, , , 的平分线交 于点 ,交 的延长线于点 , 于点 ,若 ,则 的周长为
A.16B.17C.24D.25
阅读下面的例题及点拨,并解决问题:
例题:如图①,在等边 中, 是 边上一点(不含端点 , , 是 的外角 的平分线上一点,且 .求证: .
点拨:如图②,作 , 与 的延长线相交于点 ,得等边 ,连接 .易证: ,可得 , ;又 ,则 ,可得 ;由 ,进一步可得 ,又因为 ,所以 ,即: .
问题:如图③,在正方形 中, 是 边上一点(不含端点 , , 是正方形 的外角 的平分线上一点,且 .求证: .
(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在 中,点 在线段 上, , , , ,求 的长.
经过社团成员讨论发现,过点 作 ,交 的延长线于点 ,通过构造 就可以解决问题(如图 .
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形 中,对角线 与 相交于点 , , , , ,求 的长.
如图, 是 外接圆上的动点,且 , 位于 的两侧, ,垂足为 , 的延长线交此圆于点 . ,垂足为 , 交 于点 , , 的延长线交于点 ,且 .
(1)求证: ;
(2)设 外接圆的圆心为 ,若 , ,求 的大小.
如图1,在等腰三角形 中, , .如图2,在底边 上取一点 ,连接 ,使得 .如图3,将 沿着 所在直线折叠,使得点 落在点 处,连接 ,得到四边形 ,则 的长是
A.4B. C. D.
已知四边形 是 的内接四边形, 是 的直径, ,垂足为 .
(1)延长 交 于点 ,延长 , 交于点 ,如图1.求证: ;
(2)过点 作 ,垂足为 , 交 于点 ,且点 和点 都在 的左侧,如图2.若 , , ,求 的大小.
如图,在 中, ,以 为直径作圆 ,分别交 于点 ,交 的延长线于点 ,过点 作 于点 ,连接 交线段 于点 .
(1)求证: 是圆 的切线;
(2)若 为 的中点,求 的值;
(3)若 ,求圆 的半径.
试题篮
()