如图, 、 , 、 分别为矩形 的边 、 、 、 的中点,连接 、 、 , , .已知 , ,则 的长为 .
如图,在 中, , ,点 , 分别在 , 上,且 .
(1)如图1,求证: ;
(2)如图2, 是 的中点,求证: ;
(3)如图3, , 分别是 , 的中点,若 , ,求 的面积.
如图,在 中,对角线 与 相交于点 , 是边 的中点,连接 .若 , ,则 的度数为
A. B. C. D.
如图,在矩形 中, , ,点 在 上, ,点 是边 上一动点,以 为斜边作 .若点 在矩形 的边上,且这样的直角三角形恰好有两个,则 的值是 .
如图,已知在 中, ,点 为 的中点,点 在 上,将 沿 折叠,使得点 恰好落在 的延长线上的点 处,连接 ,则下列结论不一定正确的是
A. B.
C. 和 的面积相等D. 和 的面积相等
如图,已知线段 , 于点 ,且 , 是射线 上一动点, , 分别是 , 的中点,过点 , , 的圆与 的另一交点 (点 在线段 上),连接 , .
(1)当 时,求 和 的度数;
(2)求证: .
(3)在点 的运动过程中
①当 时,取四边形 一边的两端点和线段 上一点 ,若以这三点为顶点的三角形是直角三角形,且 为锐角顶点,求所有满足条件的 的值;
②记 与圆的另一个交点为 ,将点 绕点 旋转 得到点 ,当点 恰好落在 上时,连接 , , , ,直接写出 和 的面积之比.
在直角坐标系中,过原点 及点 , 作矩形 、连接 ,点 为 的中点,点 是线段 上的动点,连接 ,作 ,交 于点 ,连接 .已知点 从 点出发,以每秒1个单位长度的速度在线段 上移动,设移动时间为 秒.
(1)如图1,当 时,求 的长.
(2)如图2,当点 在线段 上移动的过程中, 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 的值.
(3)连接 ,当 将 分成的两部分的面积之比为 时,求相应的 的值.
如图,在 中, , ,以 的中点 为圆心 分别与 , 相切于 , 两点,则 的长为
A. B. C. D.
如图, 是 的中线, 是线段 上一点(不与点 重合). 交 于点 , ,连接 .
(1)如图1,当点 与 重合时,求证:四边形 是平行四边形;
(2)如图2,当点 不与 重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长 交 于点 ,若 ,且 .
①求 的度数;
②当 , 时,求 的长.
如图, 为圆 的直径, 为圆 上一点, 为 延长线一点,且 , 于点 .
(1)求证:直线 为圆 的切线;
(2)设 与圆 交于点 , 的延长线与 交于点 ,已知 , , ,求 的值.
试题篮
()