优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 矩形的判定
初中数学

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

下列说法正确的是 (    )

A.一组对边平行另一组对边相等的四边形是平行四边形

B.对角线互相垂直平分的四边形是菱形

C.对角线相等的四边形是矩形

D.对角线互相垂直且相等的四边形是正方形

来源:2020年四川省眉山市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E BC 的中点,连接 AE 并延长交 DC 的延长线于点 F ,连接 BF AC ,若 AD = AF ,求证:四边形 ABFC 是矩形.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

A B C D 是反比例函数 y = k x 图象上的任意四点,现有以下结论:

①四边形 ABCD 可以是平行四边形;

②四边形 ABCD 可以是菱形;

③四边形 ABCD 不可能是矩形;

④四边形 ABCD 不可能是正方形.

其中正确的是  .(写出所有正确结论的序号)

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,对角线 AC BD 相交于点 O E CD 中点,连接 OE .过点 C CF / / BD OE 的延长线于点 F ,连接 DF

求证:(1) ΔODE ΔFCE

(2)四边形 OCFD 是矩形.

来源:2019年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,对角线 BD AD AB = 10 AD = 6 O BD 的中点, E 为边 AB 上一点,直线 EO CD 于点 F ,连结 DE BF .下列结论不成立的是 (    )

A.四边形 DEBF 为平行四边形

B.若 AE = 3 . 6 ,则四边形 DEBF 为矩形

C.若 AE = 5 ,则四边形 DEBF 为菱形

D.若 AE = 4 . 8 ,则四边形 DEBF 为正方形

来源:2020年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, BD 为对角线,将矩形 ABCD 沿 BE BF 所在直线折叠,使点 A 落在 BD 上的点 M 处,点 C 落在 BD 上的点 N 处,连结 EF .已知 AB = 3 BC = 4 ,则 EF 的长为 (    )

A.3B.5C. 5 13 6 D. 13

来源:2020年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 C BE 的中点,四边形 ABCD 是平行四边形.

(1)求证:四边形 ACED 是平行四边形;

(2)如果 AB = AE ,求证:四边形 ACED 是矩形.

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 AOB 的直径, C 是半圆上的一点, AD 平分 BAC 交半圆于点 D ,过点 D DH AC AC 的延长线交于点 H

(1)求证: DH 是半圆的切线;

(2)若 DH = 2 5 sin BAC = 5 3 ,求半圆的直径.

来源:2020年四川省凉山州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 P AB 上一动点(不与 A B 重合),对角线 AC BD 相交于点 O ,过点 P 分别作 AC BD 的垂线,分别交 AC BD 于点 E F ,交 AD BC 于点 M N .下列结论:

ΔAPE ΔAME

PM + PN = AC

P E 2 + P F 2 = P O 2

ΔPOF ΔBNF

⑤点 O M N 两点的连线上.

其中正确的是 (    )

A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤

来源:2020年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在圆 O 中,弦 AB 等于弦 CD ,且相交于点 P ,其中 E F AB CD 中点.

(1)证明: OP EF

(2)连接 AF AC CE ,若 AF / / OP ,证明:四边形 AFEC 为矩形.

来源:2021年上海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O E F AC 上的两点,并且 AE = CF ,连接 DE BF

(1)求证: ΔDOE ΔBOF

(2)若 BD = EF ,连接 EB DF ,判断四边形 EBFD 的形状,并说明理由.

来源:2018年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

如图,等腰 ΔAOB 中,顶角 AOB = 40 ° ,用尺规按①到④的步骤操作:

①以 O 为圆心, OA 为半径画圆;

②在 O 上任取一点 P (不与点 A B 重合),连接 AP

③作 AB 的垂直平分线与 O 交于 M N

④作 AP 的垂直平分线与 O 交于 E F

结论Ⅰ:顺次连接 M E N F 四点必能得到矩形;

结论Ⅱ: O 上只有唯一的点 P ,使得 S 扇形 FOM = S 扇形 AOB

对于结论Ⅰ和Ⅱ,下列判断正确的是 (    )

A.

Ⅰ和Ⅱ都对

B.

Ⅰ和Ⅱ都不对

C.

Ⅰ不对Ⅱ对

D.

Ⅰ对Ⅱ不对

来源:2021年河北省中考数学试卷
  • 题型:未知
  • 难度:未知

下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是 (    )

A.由②推出③,由③推出①B.由①推出②,由②推出③

C.由③推出①,由①推出②D.由①推出③,由③推出②

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

下列说法:

①四边相等的四边形一定是菱形

②顺次连接矩形各边中点形成的四边形一定是正方形

③对角线相等的四边形一定是矩形

④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分

其中正确的有 (    ) 个.

A.4B.3C.2D.1

来源:2017年四川省广安市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学矩形的判定试题