如图,在矩形 中,点 为坐标原点,点 的坐标为 ,点 、 在坐标轴上,点 在 边上,直线 ,直线 .
(1)分别求直线 与 轴,直线 与 的交点坐标;
(2)已知点 在第一象限,且是直线 上的点,若 是等腰直角三角形,求点 的坐标;
(3)我们把直线 和直线 上的点所组成的图形为图形 .已知矩形 的顶点 在图形 上, 是坐标平面内的点,且 点的横坐标为 ,请直接写出 的取值范围(不用说明理由).
在 中, , , ,过点 作直线 ,将 绕点 顺时针旋转得到△ (点 , 的对应点分别为 , ,射线 , 分别交直线 于点 , .
(1)如图1,当 与 重合时,求 的度数;
(2)如图2,设 与 的交点为 ,当 为 的中点时,求线段 的长;
(3)在旋转过程中,当点 , 分别在 , 的延长线上时,试探究四边形 的面积是否存在最小值.若存在,求出四边形 的最小面积;若不存在,请说明理由.
如图1,在 中, 于点 , 的垂直平分线交 于点 ,交 于点 , , , .
(1)如图2,作 于点 ,交 于点 ,将 沿 方向平移,得到△ ,连接 .
①求四边形 的面积;
②直线 上有一动点 ,求 周长的最小值.
(2)如图3,延长 交 于点 ,过点 作 ,过 边上的动点 作 ,并与 交于点 ,将 沿直线 翻折,使点 的对应点 恰好落在直线 上,求线段 的长.
如图,线段 ,射线 , 为射线 上一点,以 为边作正方形 ,且点 、 与点 在 两侧,在线段 上取一点 ,使 ,直线 与线段 相交于点 (点 与点 、 不重合).
(1)求证: ;
(2)判断 与 的位置关系,并说明理由;
(3)求 的周长.
如图,在平面直角坐标系中,矩形 的边 在 轴上, 、 的长分别是一元二次方程 的两个根 , ,边 交 轴于点 ,动点 以每秒1个单位长度的速度,从点 出发沿折线段 向点 运动,运动的时间为 秒,设 的面积为 .
(1)求点 的坐标;
(2)求 关于 的函数关系式,并写出自变量的取值范围;
(3)在点 运动的过程中,是否存在点 ,使 是以 为腰的等腰三角形?若存在,直接写出点 的坐标;若不存在,请说明理由.
菱形 在平面直角坐标系中的位置如图所示,对角线 与 的交点 恰好在 轴上,过点 和 的中点 的直线交 于点 ,线段 , 的长是方程 的两根,请解答下列问题:
(1)求点 的坐标;
(2)若反比例函数 的图象经过点 ,则 ;
(3)点 在直线 上,在直线 上是否存在点 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
(1)数学理解:如图①, 是等腰直角三角形,过斜边 的中点 作正方形 ,分别交 , 于点 , ,求 , , 之间的数量关系;
(2)问题解决:如图②,在任意直角 内,找一点 ,过点 作正方形 ,分别交 , 于点 , ,若 ,求 的度数;
(3)联系拓广:如图③,在(2)的条件下,分别延长 , ,交 于点 , ,求 , , 的数量关系.
(1)如图①,在四边形 中, ,点 是 的中点,若 是 的平分线,试判断 , , 之间的等量关系.
解决此问题可以用如下方法:延长 交 的延长线于点 ,易证 得到 ,从而把 , , 转化在一个三角形中即可判断.
, , 之间的等量关系 ;
(2)问题探究:如图②,在四边形 中, , 与 的延长线交于点 ,点 是 的中点,若 是 的平分线,试探究 , , 之间的等量关系,并证明你的结论.
请完成如下探究系列的有关问题:
探究1:如图1, 是等腰直角三角形, ,点 为 上一动点,连接 ,以 为边在 的右侧作正方形 ,连接 ,则线段 , 之间的位置关系为 ,数量关系为 .
探究2:如图2,当点 运动到线段 的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)
探究3:如图3,如果 , , 仍然保留为 ,点 在线段 上运动,请你判断线段 , 之间的位置关系,并说明理由.
如图1,2,3分别以 的 和 为边向 外作正三角形(等边三角形)、正四边形(正方形)、正五边形, 和 相交于点 .
(1)在图1中,求证: .
(2)由(1)证得 ,由此可推得在图1中 ,请你探索在图2中, 的度数,并说明理由或写出证明过程.
(3)填空:在上述(1)(2)的基础上可得在图3中 (填写度数).
(4)由此推广到一般情形(如图4),分别以 的 和 为边向 外作正 边形, 和 仍相交于点 ,猜想得 的度数为 (用含 的式子表示).
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 沿对角线 剪开,得到 和 .并且量得 , .
操作发现:
(1)将图1中的 以点 为旋转中心,按逆时针方向旋转 ,使 ,得到如图2所示的△ ,过点 作 的平行线,与 的延长线交于点 ,则四边形 的形状是 .
(2)创新小组将图1中的 以点 为旋转中心,按逆时针方向旋转,使 、 、 三点在同一条直线上,得到如图3所示的△ ,连接 ,取 的中点 ,连接 并延长至点 ,使 ,连接 、 ,得到四边形 ,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 沿着 方向平移,使点 与点 重合,此时 点平移至 点, 与 相交于点 ,如图4所示,连接 ,试求 的值.
已知: 和矩形 如图①摆放(点 与点 重合),点 , , 在同一直线上, , , .如图②, 从图①的位置出发,沿 方向匀速运动,速度为 , 与 交于点 ;同时,点 从点 出发,沿 方向匀速运动,速度为 .过点 作 ,垂足为 ,交 于点 ,连接 , ,当点 停止运动时, 也停止运动.设运动时间为 ,解答下列问题:
(1)当 为何值时, ?
(2)设五边形 的面积为 ,求 与 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由.
(4)在运动过程中,是否存在某一时刻 ,使点 在线段 的垂直平分线上?若存在,求出 的值;若不存在,请说明理由.
已知: 是等边三角形,点 在直线 上,连接 ,以 为边作等边三角形 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 、 、 .
(1)如图1,当点 在线段 上时,求证: ;
(2)如图1,当点 在线段 上时,求证:四边形 是平行四边形;
(3)如图2,当点 在线段 延长线上时,四边形 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
四边形 是边长为4的正方形,点 在边 所在直线上,连接 ,以 为边,作正方形 (点 ,点 在直线 的同侧),连接 .
(1)如图1,当点 与点 重合时,请直接写出 的长;
(2)如图2,当点 在线段 上时, ;
①求点 到 的距离;
②求 的长;
(3)若 ,请直接写出此时 的长.
如图,在平面直角坐标系中,四边形 的顶点 是坐标原点,点 的坐标为 ,点 的坐标为 ,点 的坐标为 , ,点 , 分别为四边形 边上的动点,动点 从点 开始,以每秒1个单位长度的速度沿 路线向终点 匀速运动,动点 从 点开始,以每秒两个单位长度的速度沿 路线向终点 匀速运动,点 , 同时从 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间 秒 , 的面积为 .
(1)填空: 的长是 , 的长是 ;
(2)当 时,求 的值;
(3)当 时,设点 的纵坐标为 ,求 与 的函数关系式;
(4)若 ,请直接写出此时 的值.
试题篮
()