优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆周角定理 / 解答题
初中数学

如图,点 C为△ ABD的外接圆上的一动点(点 C不在 BAD ̂ 上,且不与点 BD重合),∠ ACB=∠ ABD=45°

(1)求证: BD是该外接圆的直径;

(2)连结 CD,求证: 2 AC = BC + CD

(3)若△ ABC关于直线 AB的对称图形为△ ABM,连接 DM,试探究 DM 2AM 2BM 2三者之间满足的等量关系,并证明你的结论.

来源:2016年广东省广州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,点 E O 上一动点,且不与 A B 两点重合, EAB 的平分线交 O 于点 C ,过点 C CD AE ,交 AE 的延长线于点 D

(1)求证: CD O 的切线;

(2)求证: A C 2 = 2 AD AO

(3)如图2,原有条件不变,连接 BE BC ,延长 AB 至点 M EBM 的平分线交 AC 的延长线于点 P CAB 的平分线交 CBM 的平分线于点 Q .求证:无论点 E 如何运动,总有 P = Q

来源:2021年湖南省永州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,的三个顶点分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)

(1)求点的坐标;

(2)将绕点逆时针旋转得到△,抛物线经过两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接,求△的面积;

(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.

来源:2019年湖南省岳阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AC O 的直径, BC BD O 的弦, M BC 的中点, OM BD 交于点 F ,过点 D DE BC ,交 BC 的延长线于点 E ,且 CD 平分 ACE

(1)求证: DE O 的切线;

(2)求证: CDE = DBE

(3)若 DE = 6 tan CDE = 2 3 ,求 BF 的长.

来源:2021年新疆生产建设兵团中考数学试卷
  • 题型:未知
  • 难度:未知

(1)方法选择

如图①,四边形的内接四边形,连接.求证:

小颖认为可用截长法证明:在上截取,连接

小军认为可用补短法证明:延长至点,使得

请你选择一种方法证明.

(2)类比探究

[探究1]

如图②,四边形的内接四边形,连接的直径,.试用等式表示线段之间的数量关系,并证明你的结论.

[探究2]

如图③,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

(3)拓展猜想

如图④,四边形的内接四边形,连接.若的直径,,则线段之间的等量关系式是  

来源:2019年山东省威海市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, PA PB O 的切线, A B 是切点, AC O 的直径,连接 OP ,交 O 于点 D ,交 AB 于点 E

(1)求证: BC / / OP

(2)若 E 恰好是 OD 的中点,且四边形 OAPB 的面积是 16 3 ,求阴影部分的面积;

(3)若 sin BAC = 1 3 ,且 AD = 2 3 ,求切线 PA 的长.

来源:2021年湖北省黄石市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在以点为中心的正方形中,,连接,动点从点出发沿以每秒1个单位长度的速度匀速运动,到达点停止.在运动过程中,的外接圆交于点,连接于点,连接,将沿翻折,得到

(1)求证:是等腰直角三角形;

(2)当点恰好落在线段上时,求的长;

(3)设点运动的时间为秒,的面积为,求关于时间的关系式.

来源:2019年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 题型:未知
  • 难度:未知

已知的直径,的切线,上的点,是直径上的动点,与直线上的点连线距离的最小值为与直线上的点连线距离的最小值为

(1)求证:的切线;

(2)设,求的正弦值;

(3)设,求的取值范围.

来源:2017年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O AB O 的直径, CAB 的平分线交 BC 于点 D ,交 O 于点 E ,连接 EB ,作 BEF = CAE ,交 AB 的延长线于点 F

(1)求证: EF O 的切线;

(2)若 BF = 10 EF = 20 ,求 O 的半径和 AD 的长.

image.png

来源:2021年贵州省铜仁市中考数学试卷
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC D 是边 BC 上一动点,连接 AD ,将 AD 绕点 A 逆时针旋转至 AE 的位置,使得 DAE + BAC = 180 °

(1)如图1,当 BAC = 90 ° 时,连接 BE ,交 AC 于点 F .若 BE 平分 ABC BD = 2 ,求 AF 的长;

(2)如图2,连接 BE ,取 BE 的中点 G ,连接 AG .猜想 AG CD 存在的数量关系,并证明你的猜想;

(3)如图3,在(2)的条件下,连接 DG CE .若 BAC = 120 ° ,当 BD > CD AEC = 150 ° 时,请直接写出 BD - DG CE 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 C O 上异于 A B 的点,连接 AC BC ,点 D BA 的延长线上,且 DCA = ABC ,点 E DC 的延长线上,且 BE DC

(1)求证: DC O 的切线;

(2)若 OA OD = 2 3 BE = 3 ,求 DA 的长.

来源:2021年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, O 的半径为1,点 A O 的直径 BD 延长线上的一点, C O 上的一点, AD = CD A = 30 °

(1)求证:直线 AC O 的切线;

(2)求 ΔABC 的面积;

(3)点 E BND ̂ 上运动(不与 B D 重合),过点 C CE 的垂线,与 EB 的延长线交于点 F

①当点 E 运动到与点 C 关于直径 BD 对称时,求 CF 的长;

②当点 E 运动到什么位置时, CF 取到最大值,并求出此时 CF 的长.

来源:2021年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,直线 l : y = 3 4 x + b x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 A x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 A 于点 F

(1)求直线 l 的函数表达式和 tan BAO 的值;

(2)如图2,连接 CE ,当 CE = EF 时,

①求证: ΔOCE ΔOEA

②求点 E 的坐标;

(3)当点 C 在线段 OA 上运动时,求 OE EF 的最大值.

来源:2018年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆周角定理解答题