优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆周角定理
初中数学

如图,已知 ΔABC O 的内接三角形, AD O 的直径,连结 BD BC 平分 ABD

(1)求证: CAD = ABC

(2)若 AD = 6 ,求 CD ̂ 的长.

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, BC O 相切于点 B ,连接 AC OC .若 sin BAC = 1 3 ,则 tan BOC =   

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 BC O 的直径,半径 OA BC ,点 D 在劣弧 AC 上(不与点 A ,点 C 重合), BD OA 交于点 E .设 AED = α AOD = β ,则 (    )

A. 3 α + β = 180 ° B. 2 α + β = 180 ° C. 3 α - β = 90 ° D. 2 α - β = 90 °

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB 是半圆 O 的直径, C D 是半圆 O 上不同于 A B 的两点, AD = BC AC BD 相交于点 F BE 是半圆 O 所在圆的切线,与 AC 的延长线相交于点 E

(1)求证: ΔCBA ΔDAB

(2)若 BE = BF ,求证: AC 平分 DAB

来源:2020年安徽省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 相切于点 B AO O 于点 C AO 的延长线交 O 于点 D E BCD ̂ 上不与 B D 重合的点, sin A = 1 2

(1)求 BED 的大小;

(2)若 O 的半径为3,点 F AB 的延长线上,且 BF = 3 3 ,求证: DF O 相切.

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O AB = CD A BD ̂ 中点, BDC = 60 ° ,则 ADB 等于 (    )

A. 40 ° B. 50 ° C. 60 ° D. 70 °

来源:2020年福建省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, CD 是弦,若 BCD = 36 ° ,则 ABD 等于 (    )

A. 54 ° B. 56 ° C. 64 ° D. 66 °

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

O 中,弦 CD 与直径 AB 相交于点 P ABC = 63 °

(Ⅰ)如图①,若 APC = 100 ° ,求 BAD CDB 的大小;

(Ⅱ)如图②,若 CD AB ,过点 D O 的切线,与 AB 的延长线相交于点 E ,求 E 的大小.

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在每个小正方形的边长为1的网格中, ΔABC 的顶点 A C 均落在格点上,点 B 在网格线上,且 AB = 5 3

(Ⅰ)线段 AC 的长等于  

(Ⅱ)以 BC 为直径的半圆与边 AC 相交于点 D ,若 P Q 分别为边 AC BC 上的动点,当 BP + PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 P Q ,并简要说明点 P Q 的位置是如何找到的(不要求证明)  

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD CE ,垂足为 D AC 平分 DAB

(1)求证: CE O 的切线;

(2)若 AD = 4 cos CAB = 4 5 ,求 AB 的长.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 OABC 是平行四边形,以点 O 为圆心, OC 为半径的 O AB 相切于点 B ,与 AO 相交于点 D AO 的延长线交 O 于点 E ,连接 EB OC 于点 F .求 C E 的度数.

来源:2020年山西省中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图1,在 Rt Δ ABC 中, ACB = 90 ° AC > BC ACB 的平分线交 AB 于点 D .过点 D 分别作 DE AC DF BC .垂足分别为 E F ,则图1中与线段 CE 相等的线段是        

问题探究

(2)如图2, AB 是半圆 O 的直径, AB = 8 P AB ̂ 上一点,且 PB ̂ = 2 PA ̂ ,连接 AP BP APB 的平分线交 AB 于点 C ,过点 C 分别作 CE AP CF BP ,垂足分别为 E F ,求线段 CF 的长.

问题解决

(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知 O 的直径 AB = 70 m ,点 C O 上,且 CA = CB P AB 上一点,连接 CP 并延长,交 O 于点 D .连接 AD BD .过点 P 分别作 PE AD PF BD ,垂足分别为 E F .按设计要求,四边形 PEDF 内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设 AP 的长为 x ( m ) ,阴影部分的面积为 y ( m 2 )

①求 y x 之间的函数关系式;

②按照“少儿活动中心”的设计要求,发现当 AP 的长度为 30 m 时,整体布局比较合理.试求当 AP = 30 m 时.室内活动区(四边形 PEDF ) 的面积.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 75 ° ABC = 45 ° .连接 AO 并延长,交 O 于点 D ,连接 BD .过点 C O 的切线,与 BA 的延长线相交于点 E

(1)求证: AD / / EC

(2)若 AB = 12 ,求线段 EC 的长.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学圆周角定理试题