优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 圆的综合题 / 计算题
初中数学

阅读理解:在平面直角坐标系中,若两点 P Q 的坐标分别是 P ( x 1 y 1 )

Q ( x 2 y 2 ) ,则 P Q 这两点间的距离为 | PQ | = ( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2 .如 P ( 1 , 2 ) Q ( 3 , 4 ) ,则 | PQ | = ( 1 - 3 ) 2 + ( 2 - 4 ) 2 = 2 2

对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.

解决问题:如图,已知在平面直角坐标系 xOy 中,直线 y = kx + 1 2 y 轴于点 A ,点 A 关于 x 轴的对称点为点 B ,过点 B 作直线 l 平行于 x 轴.

(1)到点 A 的距离等于线段 AB 长度的点的轨迹是                               

(2)若动点 C ( x , y ) 满足到直线 l 的距离等于线段 CA 的长度,求动点 C 轨迹的函数表达式;

问题拓展:(3)若(2)中的动点 C 的轨迹与直线 y = kx + 1 2 交于 E F 两点,分别过 E F 作直线 l 的垂线,垂足分别是 M N ,求证:

EF ΔAMN 外接圆的切线;

1 AE + 1 AF 为定值.

来源:2018年湖北省荆州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长为4,点 P AB 边上的一个动点,连接 CP ,过点 P PC 的垂线交 AD 于点 E ,以 PE 为边作正方形 PEFG ,顶点 G 在线段 PC 上,对角线 EG PF 相交于点 O

(1)若 AP = 1 ,则 AE =        

(2)①求证:点 O 一定在 ΔAPE 的外接圆上;

②当点 P 从点 A 运动到点 B 时,点 O 也随之运动,求点 O 经过的路径长;

(3)在点 P 从点 A 到点 B 的运动过程中, ΔAPE 的外接圆的圆心也随之运动,求该圆心到 AB 边的距离的最大值.

来源:2017年江苏省扬州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为 r 、圆心角 90 ° 的扇形 A 2 O B 2 ,矩形 A 2 C 2 EO B 2 D 2 EO ,及若干个缺一边的矩形状框 A 1 C 1 D 1 B 1 A 2 C 2 D 2 B 2 A n B n C n D n OEFG 围成,其中 A 1 G B 1 A 2 B 2 ̂ 上, A 2 A 3 A n B 2 B 3 B n 分别在半径 O A 2 O B 2 上, C 2 C 3 C n D 2 D 3 D n 分别在 E C 2 E D 2 上, EF C 2 D 2 H 2 C 1 D 1 EF H 1 F H 1 = H 1 H 2 = d C 1 D 1 C 2 D 2 C 3 D 3 C n D n 依次等距离平行排放(最后一个矩形状框的边 C n D n 与点 E 间的距离应不超过 d ) A 1 C 1 / / A 2 C 2 / / A 3 C 3 / / / / A n C n

(1)求 d 的值;

(2)问: C n D n 与点 E 间的距离能否等于 d ?如果能,求出这样的 n 的值,如果不能,那么它们之间的距离是多少?

来源:2016年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

问题背景:

如图①,在四边形 ADBC 中, ACB = ADB = 90 ° AD = BD ,探究线段 AC BC CD 之间的数量关系.

小吴同学探究此问题的思路是:将 ΔBCD 绕点 D ,逆时针旋转 90 ° ΔAED 处,点 B C 分别落在点 A E 处(如图② ) ,易证点 C A E 在同一条直线上,并且 ΔCDE 是等腰直角三角形,所以 CE = 2 CD ,从而得出结论: AC + BC = 2 CD

简单应用:

(1)在图①中,若 AC = 2 BC = 2 2 ,则 CD =   

(2)如图③, AB O 的直径,点 C D 上, AD ̂ = BD ̂ ,若 AB = 13 BC = 12 ,求 CD 的长.

拓展规律:

(3)如图④, ACB = ADB = 90 ° AD = BD ,若 AC = m BC = n ( m < n ) ,求 CD 的长(用含 m n 的代数式表示)

(4)如图⑤, ACB = 90 ° AC = BC ,点 P AB 的中点,若点 E 满足 AE = 1 3 AC CE = CA ,点 Q AE 的中点,则线段 PQ AC 的数量关系是  

来源:2016年江苏省淮安市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为1,点 P 在射线 BC 上(异于点 B C ) ,直线 AP 与对角线 BD 及射线 DC 分别交于点 F Q

(1)若 BP = 3 3 ,求 BAP 的度数;

(2)若点 P 在线段 BC 上,过点 F FG CD ,垂足为 G ,当 ΔFGC ΔQCP 时,求 PC 的长;

(3)以 PQ 为直径作 M

①判断 FC M 的位置关系,并说明理由;

②当直线 BD M 相切时,直接写出 PC 的长.

来源:2016年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.

理解:

(1)如图1,已知 A B O 上两点,请在圆上找出满足条件的点 C ,使 ΔABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);

(2)如图2,在正方形 ABCD 中, E BC 的中点, F CD 上一点,且 CF = 1 4 CD ,试判断 ΔAEF 是否为“智慧三角形”,并说明理由;

运用:

(3)如图3,在平面直角坐标系 xOy 中, O 的半径为1,点 Q 是直线 y = 3 上的一点,若在 O 上存在一点 P ,使得 ΔOPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 P 的坐标.

来源:2017年湖北省咸宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以原点 O 为圆心,3为半径的圆与 x 轴分别交于 A B 两点(点 B 在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 O 分别交于 C D 两点(点 C 在点 D 的上方),直线 AC DB 交于点 E .若 AC : CE = 1 : 2

(1)求点 P 的坐标;

(2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.

来源:2017年江苏省无锡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

初中数学圆的综合题计算题